Skip to main content
Log in

Streaming readout for next generation electron scattering experiments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Current and future experiments at the high-intensity frontier are expected to produce an enormous amount of data that needs to be collected and stored for offline analysis. Thanks to the continuous progress in computing and networking technology, it is now possible to replace the standard ‘triggered’ data acquisition systems with a new, simplified and outperforming scheme. ‘Streaming readout’ (SRO) DAQ aims to replace the hardware-based trigger with a much more powerful and flexible software-based one, that considers the whole detector information for efficient real-time data tagging and selection. Considering the crucial role of DAQ in an experiment, validation with on-field tests is required to demonstrate SRO performance. In this paper, we report results of the on-beam validation of the Jefferson Lab SRO framework. We exposed different detectors (PbWO-based electromagnetic calorimeters and a plastic scintillator hodoscope) to the Hall-D electron-positron secondary beam and to the Hall-B production electron beam, with increasingly complex experimental conditions. By comparing the data collected with the SRO system against the traditional DAQ, we demonstrate that the SRO performs as expected. Furthermore, we provide evidence of its superiority in implementing sophisticated AI-supported algorithms for real-time data analysis and reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability statement

The data are usually not deposited. Please contact the corresponding author for details.

Notes

  1. In its standard implementation, k-means has as hyperparameter the number of iterations to run and the number of clusters k; in our implementation of k-means, we first determine the seeds of the clusters and then start clustering.

  2. During Run-1, only the FT-CAL was used.

  3. This value corresponds to the accumulated charge during Hall-B tests.

References

  1. R. Abdul Khalek et al. Science requirements and detector concepts for the electron-ion collider: EIC Yellow Report, (2021). arXiv:2103.05419

  2. SoLID Collaboration. SoLID (Solenoidal Large Intensity Device) Updated Preliminary Conceptual Design Report, (2019). https://hallaweb.jlab.org/12GeV/SoLID/files/solid-precdr-Nov2019.pdf

  3. MOLLER Collaboration. The MOLLER experiment: an ultra-precise measurement of the weak mixing angle using Møller scattering, (2014). arXiv:1411.4088

  4. A. Adare et al. An upgrade proposal from the PHENIX Collaboration, (2015). arXiv:1501.06197

  5. V.D. Burkert et al., The CLAS12 spectrometer at Jefferson laboratory. Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419

    Article  Google Scholar 

  6. R. Aaij, J. Albrecht, M. Belous, P. Billoir, T. Boettcher, A. Brea Rodríguez, D. vom Bruch, D. H. Cámpora Prez , A. Casais Vidal, D. C. Craik, et al. Allen: a high-level trigger on GPUs for LHCb. Comput. Softw. Big Sci., 4(1) (2020). https://doi.org/10.1007/s41781-020-00039-7

  7. P. Buncic, M. Krzewicki, P. Vande Vyvre. Technical Design report for the upgrade of the online-offline computing system. 4 (2015)

  8. The LHCb Collaboration. Upgrade Software and Computing, 2018. http://cds.cern.ch/record/2310827

  9. Rohr D., Usage of GPUs in ALICE Online and Offline processing during LHC Run 3. EPJ Web Conf., 251, 04026 (2021). arXiv:2106.03636, https://doi.org/10.1051/epjconf/202125104026

  10. F. Barbosa, C. Hutton, A. Sitnikov, A. Somov, S. Somov, I. Tolstukhin, Pair spectrometer hodoscope for Hall D at Jefferson Lab. Nucl. Instrum. Meth. A795, 376–380 (2015). https://doi.org/10.1016/j.nima.2015.06.012

    Article  ADS  Google Scholar 

  11. A. Somov, I. Tolstukhin, S.V. Somov, V.V. Berdnikov, Commissioning of the Pair Spectrometer of the GlueX experiment. J. Phys. Conf. Ser. 798(1), 012175 (2017). https://doi.org/10.1088/1742-6596/798/1/012175

    Article  Google Scholar 

  12. A. Acker et al., The CLAS12 forward tagger. Nucl. Instrum. Meth. A 959, 163475 (2020). https://doi.org/10.1016/j.nima.2020.163475

    Article  Google Scholar 

  13. S. Boyarinov, B. Raydo, C. Cuevas, C. Dickover, H. Dong, G. Heyes, D. Abbott, W. Gu, V. Gyurjyan, E. Jastrzembski, B. Moffit, C. Timmer, I. Mandjavidze, D. Heddle, C. Smith, A. Celentano, R. De Vita, N. Baltzell, K. Livingston, B. McKinnon, W. Moore, The CLAS12 data acquisition system. Nucl. Instrum. Meth. A 966, 163698 (2020). https://doi.org/10.1016/j.nima.2020.163698

    Article  Google Scholar 

  14. T. Chiarusi, M. Favaro, F. Giacomini, M. Manzali, A. Margiotta, C. Pellegrino, The trigger and data acquisition system for the KM3NeT-Italy neutrino telescope. J. Phys. Conf. Series 898, 032042 (2017). https://doi.org/10.1088/1742-6596/898/3/032042

    Article  Google Scholar 

  15. F. Ameli, M. Battaglieri, M. Bondì, A. Celentano, S. Boyarinov, N. Brei, T. Chiarusi, R. De Vita, C. Fanelli, V. Gyurjyan, D. Lawrence, P. Musico, C. Pellegrino, B. Raydo, S. Vallarino, Streaming readout of the CLAS12 forward tagger using TriDAS and JANA2. EPJ Web Conf. 251, 04011 (2021). https://doi.org/10.1051/epjconf/202125104011

    Article  Google Scholar 

  16. S. Aiello et al., Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower. Astroparticle Phys. 66, 1–7 (2015). https://doi.org/10.1016/j.astropartphys.2014.12.010

    Article  ADS  Google Scholar 

  17. AI4EIC-exp: I Workshop on Artificial Intelligence for the Electron Ion Collider—experimental applications (2021). https://indico.bnl.gov/event/10699/

  18. R.J.G.B. Campello, D. Moulavi, A. Zimek, J. Sander, Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data (TKDD) 10(1), 1–51 (2015). https://doi.org/10.1145/2733381

    Article  Google Scholar 

  19. J.A. Hartigan, M.A. Wong, Algorithm AS 136: A \(k\)-means clustering algorithm. J. Royal Stat. Soc. Series C (Appl. Stat.) 28(1), 100–108 (1979). https://doi.org/10.2307/2346830

    Article  MATH  Google Scholar 

  20. How HDBSCAN works. hdbscan 0.8.1 documentation. https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

  21. L. McInnes and J. Healy. Accelerated Hierarchical Density Based Clustering. In Data Mining Workshops (ICDMW), 2017 IEEE International Conference on, pp. 33–42. IEEE (2017). arXiv:1705.07321, https://doi.org/10.1109/ICDMW.2017.12

  22. T. Horn et al. Scintillating crystals for the Neutral Particle Spectrometer in Hall C at JLab. Nucl. Instrum. Meth. A, 956, 163375 (2020). arXiv:1911.11577, https://doi.org/10.1016/j.nima.2019.163375

  23. Y.-S. Tsai. Pair Production and Bremsstrahlung of Charged Leptons. Rev. Mod. Phys., 46, 815 (1974). [Erratum: Rev. Mod. Phys. 49, 521(1977)]. https://doi.org/10.1103/RevModPhys.49.421

  24. V. Mathieu, G. Fox, and A. P. Szczepaniak. Neutral Pion Photoproduction in a Regge Model. Phys. Rev. D, 92(7), 074013 (2015). arXiv:1505.02321, https://doi.org/10.1103/PhysRevD.92.074013

  25. M. Carver et al. Photoproduction of the \(f_2(1270)\) meson using the CLAS detector. Phys. Rev. Lett., 126(8), 082002 (2021). arXiv:2010.16006, https://doi.org/10.1103/PhysRevLett.126.082002

  26. V. Mathieu, A. Pilloni, M. Albaladejo, Ł. Bibrzycki, A. Celentano, C. Fernández-Ramírez, and A.P. Szczepaniak. Exclusive tensor meson photoproduction. Phys. Rev. D, 102(1), 014003 (2020). arXiv:2005.01617, https://doi.org/10.1103/PhysRevD.102.014003

  27. M. Ungaro et al., The CLAS12 Geant4 simulation. Nucl. Instrum. Meth. A 959, 163422 (2020). https://doi.org/10.1016/j.nima.2020.163422

    Article  Google Scholar 

  28. V. Ziegler et al., The CLAS12 software framework and event reconstruction. Nucl. Instrum. Meth. A 959, 163472 (2020). https://doi.org/10.1016/j.nima.2020.163472

    Article  Google Scholar 

  29. Jefferson Lab Data Acquisition, The EVIO data format. https://coda.jlab.org/drupal/content/event-io-evio

Download references

Acknowledgements

We would like to acknowledge the CLAS12 and GlueX collaborations as well as the JLab technical staff for their accommodation and support of this effort. The INFN Group has been supported by Italian Ministry of Foreign Affairs (MAECI) as Projects of Great Relevance within Italy/US Scientific and Technological Cooperation under grant n. MAE0065689-PGR00799. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The work of CF is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under grant No. DE-SC0019999. Part of the work was supported by the Jefferson Lab LDRD project INDRA-ASTRA (2020-LDRD-LD2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Bondí.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameli, F., Battaglieri, M., Berdnikov, V.V. et al. Streaming readout for next generation electron scattering experiments. Eur. Phys. J. Plus 137, 958 (2022). https://doi.org/10.1140/epjp/s13360-022-03146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03146-z

Navigation