Skip to main content
Log in

Postbuckling analysis of FG-GPLs-reinforced double-layered microbeams system integrated with an elastic foundation exposed to thermal load

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Mechanical and thermal postbuckling analyses of double-layered microbeams reinforced with graphene nanoplatelets (GPLs) are investigated, for the first time, based on a new refined shear deformation beam theory. The twin microbeams are bounded by a set of independent linear elastic springs and exposed to axial compressive load as well as nonlinear thermal load. The small-scale effect is considered by using the modified couple-stress theory that contains only one material length scale parameter. Each microbeam in the present system is composed of a polymer reinforced with the GPLs that graded according to a sinusoidal law. A variational approach according to principal of virtual work is utilized to establish the nonlinear stability equations. Galerkin’s procedure is employed to solve the stability equations to obtain postbuckling curves. Effects of the length scale parameter and other parameters on the Postbuckled equilibrium paths are investigated in details. The numerical results show that considering the small size effect enhance the beam strength leading to an increment in postbuckling load and postbuckling temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Z. Oniszczuk, Free transverse vibrations of elastically connected simply supported double-beam complex system. J. Sound Vib. 232(2), 387–403 (2000)

    Article  ADS  Google Scholar 

  2. M. Shamalta, A.V. Metrikine, Analytical study of the dynamic response of an embedded railway track to a moving load. Arc Appl. Mech. 73, 131–46 (2003)

    Article  MATH  Google Scholar 

  3. M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–5 (2009)

    Article  ADS  Google Scholar 

  4. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K.J. Vahala et al., Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photon 4, 236–42 (2010)

    Article  ADS  Google Scholar 

  5. M. Sierra-Castaner, M. Vera-Isasa, M. Sierra-Perez, J.L. Fernandez-Jambrina, Double-beam parallel-plate slot antenna. IEEE Transactions Antennas Propag. 53(3), 977–984 (2005)

    Article  ADS  Google Scholar 

  6. T. Zhou, L. Tang, H. Ji, J. Qiu, L. Cheng, Dynamic and static properties of double-layered compound acoustic black hole structures. Int. J. Appl. Mech. 9(05), 1750074 (2017)

    Article  Google Scholar 

  7. J.M. Seelig, W.H. Hoppmann II., Normal mode vibrations of systems of elastically connected parallel bars. J. Acoust. Soc. Amer. 36, 93–99 (1964)

    Article  ADS  Google Scholar 

  8. J.M. Seelig, W.H. Hoppmann II., Impact on an elastically connected double-beam system. J. Appl. Mech. 31, 621–626 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. P.G. Kessel, Resonances excited in an elastically connected double-beam system by a cyclic moving load. J. Acoust. Soc. Amer. 40, 684–687 (1966)

    Article  ADS  Google Scholar 

  10. S. Chonan, Dynamical behaviours of elastically connected double-beam systems subjected to an impulsive load. Bull. JSME 19, 595–603 (1976)

    Article  Google Scholar 

  11. T.R. Hamada, H. Nakayama, K. Hayashi, Free and forced vibrations of elastically connected double-beam systems. Bull. JSME 26, 1936–1942 (1983)

    Article  Google Scholar 

  12. Z. Oniszczuk, Free transverse vibrations of elastically connected simply supported double-beam complex system. J. Sound Vib. 232, 387–403 (2000)

    Article  ADS  Google Scholar 

  13. J. Li, H. Hua, Spectral finite element analysis of elastically connected double-beam systems. Finite Elements Anal. Des. 43(15), 1155–1168 (2007)

    Article  MathSciNet  Google Scholar 

  14. M. Simsek, S. Cansiz, Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load. Compos. Struct. 94(9), 2861–2878 (2012)

    Article  Google Scholar 

  15. H. Deng, W. Cheng, S. Zhao, Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Compos. Struct. 160, 152–168 (2017)

    Article  Google Scholar 

  16. M. Sobhy, Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory. Appl. Math. Model. 40(1), 85–99 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. Sobhy, A.M. Zenkour, Thermal buckling of double-layered graphene system in humid environment. Mater. Res. Express 5(1), 015028 (2018)

    Article  ADS  Google Scholar 

  18. M. Sobhy, A.M. Zenkour, Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory. Compos. Struct. 220, 289–303 (2019)

    Article  Google Scholar 

  19. H. Fei, D. Danhui, D. Zichen, A dynamic stiffness-based modal analysis method for a double-beam system with elastic supports. Mech. Syst. Signal Process. 146, 106978 (2021)

    Article  Google Scholar 

  20. S. Chen, Q. Zhang, H. Liu, Dynamic response of double-FG porous beam system subjected to moving load. Eng. Computers (2021). https://doi.org/10.1007/s00366-021-01376-w

    Article  Google Scholar 

  21. A.M. Zenkour, M. Sobhy, Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng. Computers 38(2), 1313–1329 (2022)

    Article  Google Scholar 

  22. Y. Li, F. Xiong, L. Xie, L. Sun, State-space approach for transverse vibration of double-beam systems. Int. J. Mech. Sci. 189, 105974 (2021)

    Article  Google Scholar 

  23. X. Zhao, Free and forced vibration analysis of double-beam systems with concentrated masses. J. Braz. Soc. Mech. Sci. Eng. 43(10), 1–17 (2021)

    Article  Google Scholar 

  24. G. Kim, P. Han, K. An, D. Choe, Y. Ri, H. Ri, Free vibration analysis of functionally graded double-beam system using Haar wavelet discretization method. Eng. Sci. Technol. Int. J. 24(2), 414–427 (2021)

    Google Scholar 

  25. X. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1–4), 481–494 (2003)

    Article  Google Scholar 

  26. D.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  27. E. Cosserat, F. Cosserat. Theory of deformable bodies (Translated by D.H. Delphenich), Scientific Library, A (vol. 6). Paris, Sorbonne: Herman and Sons (1909)

  28. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–48 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. R.D. Mindlin, Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Fleck, J.W. Hutchinson, Phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–57 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. C.W. Lim, G. Zhang, J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M. Malikan, N.S. Uglov, V.A. Eremeyev, On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures. Int. J. Eng. Sci. 157, 103395 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Malikan, V.A. Eremeyev, Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method. Mater. Res. Express 7(2), 025005 (2020)

    Article  ADS  Google Scholar 

  34. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–508 (2003)

    Article  ADS  MATH  Google Scholar 

  35. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–43 (2002)

    Article  MATH  Google Scholar 

  36. H.M. Ma, X.L. Gao, J. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. W. Chen, J. Si, A model of composite laminated beam based on the global-local theory and new modified couple-stress theory. Compos. Struct. 103, 99–107 (2013)

    Article  Google Scholar 

  38. W.Y. Jung, S.C. Han, W.T. Park, A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Compos. B Eng. 60, 746–756 (2014)

    Article  Google Scholar 

  39. C. Tao, Y. Fu, Thermal buckling and postbuckling analysis of size-dependent composite laminated microbeams based on a new modified couple stress theory. Acta Mech. 228(5), 1711–1724 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Malikan, Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Appl. Math. Model. 48, 196–207 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. C.L. Thanh, A.J.M. Ferreira, M.A. Wahab, A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis. Thin Walled Struct. 145, 106427 (2019)

    Article  Google Scholar 

  42. M.S.H. Al-Furjan, E. Samimi-Sohrforozani, M. Habibi, won Jung, D., Safarpour, H., Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Compos. Struct. 257, 113152 (2021)

  43. Y.S. Li, T. Xiao, Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory. Appl. Math. Model. 96, 733–750 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. M.A. Abazid, M. Sobhy, Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsyst. Technol. 24(2), 1227–1245 (2018)

    Article  Google Scholar 

  45. M. Sobhy, A.F. Radwan, Influence of a 2D magnetic field on hygrothermal bending of sandwich CNTs-reinforced microplates with viscoelastic core embedded in a viscoelastic medium. Acta Mech. 231(1), 71–99 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Sobhy, Size-dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory. Int. J. Appl. Mech. 12(02), 2050017 (2020)

    Article  Google Scholar 

  47. A.F. Radwan, M. Sobhy, Transient instability analysis of viscoelastic sandwich CNTs-reinforced microplates exposed to 2D magnetic field and hygrothermal conditions. Compos. Struct. 245, 112349 (2020)

    Article  Google Scholar 

  48. Y. Wang, K. Xie, T. Fu, W. Zhang, A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory. Eur. Phys. J. Plus 135(1), 1–19 (2020)

    Article  ADS  Google Scholar 

  49. M. Alimoradzadeh, S.D. Akbas, Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory. Eur. Phys. J. Plus 136(5), 1–20 (2021)

    Article  Google Scholar 

  50. A. Amiri, R. Talebitooti, Vibration and stability analysis of fluid-conveying sandwich micro-pipe with magnetorheological elastomer core considering modified couple stress theory and geometrical nonlinearity. Eur. Phys. J. Plus 136(11), 1–28 (2021)

    Article  Google Scholar 

  51. M.A. Rafiee, J. Rafiee, Z.Z. Yu, N. Koratkar, Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95, 223103 (2009)

    Article  ADS  Google Scholar 

  52. M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Fracture and fatigue in graphene nanocomposites. Small 6(2), 179–183 (2010)

    Article  Google Scholar 

  53. S. Chandrasekaran, N. Sato, F. Tolle, R. Mulhaupt, B. Fiedler, K. Schulte, Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014)

    Article  Google Scholar 

  54. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–88 (2017)

    Article  Google Scholar 

  55. J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–8 (2017)

    Article  Google Scholar 

  56. M. Malikan, V.A. Eremeyev, A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition. Compos. Struct. 249, 112486 (2020)

    Article  Google Scholar 

  57. M. Malikan, T. Wiczenbach, V.A. Eremeyev, Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect. Continuum Mech. Thermodyn. 34(4), 1051–1066 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Sobhy, Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J. Sandw. Struct. Mater. 23(5), 1662–1700 (2021)

    Article  Google Scholar 

  59. B. Yang, S. Kitipornchai, Y.F. Yang, J. Yang, 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Appl. Math. Model. 49, 69–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. K. Li, D. Wu, X. Chen, J. Cheng, Z. Liu, W. Gao, Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Compos. Struct. 204, 114–30 (2018)

    Article  Google Scholar 

  61. M. Sobhy, 3-D elasticity numerical solution for magneto-hygrothermal bending of FG graphene/metal circular and annular plates on an elastic medium. Eur. J. Mech. A/Solids 88, 104265 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. M. Sobhy, Buckling and vibration of FG graphene platelets/aluminum sandwich curved nanobeams considering the thickness stretching effect and exposed to a magnetic field. Results Phys. 16, 102865 (2020)

    Article  Google Scholar 

  63. M. Sobhy, M.A. Abazid, Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect. Compos. B Eng. 174, 106966 (2019)

    Article  Google Scholar 

  64. M. Sobhy, M.A. Abazid, Mechanical and thermal buckling of FG-GPLs sandwich plates with negative Poisson’s ratio honeycomb core on an elastic substrate. Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-021-02303-0

    Article  Google Scholar 

  65. Z. Yang, A. Liu, S.K. Lai, B. Safaei, J. Lv, Y. Huang, J. Fu, Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Eng. Struct. 250, 113243 (2022)

    Article  Google Scholar 

  66. Y. Wang, Y. Zhou, C. Feng, J. Yang, D. Zhou, S. Wang, Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate. Appl. Math. Model. 101, 239–258 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Taheri, F. Ebrahimi, Buckling analysis of CFRP plates: a porosity-dependent study considering the GPLs-reinforced interphase between fiber and matrix. Eur. Phys. J. Plus 135(7), 1–19 (2020)

    Article  Google Scholar 

  68. M. Mirzaei, Y. Kiani, Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation. Compos. Struct. 180, 606–16 (2017)

    Article  Google Scholar 

  69. M. Alakel Abazid, 2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment. Eur. Phys. J. Plus 135(11), 1–27 (2020)

    Article  Google Scholar 

  70. M.R. Barati, A.M. Zenkour, Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 26(6), 503–511 (2019)

    Article  Google Scholar 

  71. S. Sahmani, M.M. Aghdam, Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory. Eur. Phys. J. Plus 132(11), 1–17 (2017)

    Article  Google Scholar 

  72. F.H.H. Al-Mukahal, M. Sobhy, Wave propagation and free vibration of FG graphene platelets sandwich curved beam with auxetic core via the differential quadrature method. Arch. Civil Mech. Eng. 22(1), 12 (2022)

    Article  Google Scholar 

  73. Y. Niu, M. Yao, Q. Wu, Nonlinear vibrations of functionally graded graphene reinforced composite cylindrical panels. Appl. Math. Model. 101, 1–18 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  74. N. Adab, M. Arefi, M. Amabili, A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets. Compos. Struct. 279, 114761 (2022)

    Article  Google Scholar 

  75. Q. Chai, Y.Q. Wang, Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion. Eng. Struct. 252, 113718 (2022)

    Article  Google Scholar 

  76. A.M. Zenkour, M. Sobhy, Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng. Computers (2021). https://doi.org/10.1007/s00366-020-01224-3

    Article  Google Scholar 

  77. B. Keshtegar, M. Motezaker, R. Kolahchi, N.T. Trung, Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping. Thin Walled Struct. 154, 106820 (2020)

    Article  Google Scholar 

  78. C. Wanji, W. Chen, K.Y. Sze, A model of composite laminated Reddy beam based on a modified couple-stress theory. Compos. Struct. 94(8), 2599–2609 (2012)

    Article  Google Scholar 

  79. M. Sobhy, An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment. Int. J. Mech. Sci. 110, 62–77 (2016)

    Article  Google Scholar 

  80. J.N. Reddy, A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984)

    Article  ADS  MATH  Google Scholar 

  81. M. Touratier, An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  82. K. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3), 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Karama, K.S. Afaq, S. Mistou, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40(6), 1525–1546 (2003)

    Article  MATH  Google Scholar 

  84. A.M. Zenkour, M. Sobhy, Thermal buckling of various types of FGM sandwich plates. Compos. Struct. 93(1), 93–102 (2010)

    Article  Google Scholar 

  85. F.A. Fazzolari, E. Carrera, Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions. J. Therm. Stresses 37(12), 1449–1481 (2014)

    Article  Google Scholar 

  86. B. Akgoz, O. Civalek, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49(11), 1268–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  87. M. Simsek, J.N. Reddy, A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 101, 47–58 (2013)

    Article  Google Scholar 

  88. J. Reddy, Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Sobhy.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhy, M. Postbuckling analysis of FG-GPLs-reinforced double-layered microbeams system integrated with an elastic foundation exposed to thermal load. Eur. Phys. J. Plus 137, 923 (2022). https://doi.org/10.1140/epjp/s13360-022-03137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03137-0

Navigation