Skip to main content
Log in

Classification of quantum systems with position-dependent effective mass based on lie algebra and special functions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Considering the position-dependent effective mass in the study of quantum mechanical systems, a wide range of solvable potentials has been obtained. These potentials are obtained by applying canonical transformations to the Schrödinger equation. In this method, the internal functions introduced by Levai for solvable potentials with constant mass have been used, and the eigenfunctions and eigenvalues have been fully obtained. The eigenfunction of these solvable potentials can be obtained based on orthogonal polynomials (Jacobian, generalized Laguerre and Hermite polynomials). Some of these potentials are Scarf-II, Pöschl-Teller, Rosen-Mörse-II and Eckart, whose applications have been described in physical systems. Finally, all the results are placed in a table and the figures of the desired functions are drawn for specific values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. D.J. Bendaniel, C.B. Duke, Space-charge effects on electron tunneling. Phys. Rev. J. Arch. 152, 683 (1966)

    Article  ADS  Google Scholar 

  2. D. Bessis, G. Mezincescu, Design of semiconductor heterostructures with preset electron reflectance by inverse scattering techniques. Microelectron. J. 30, 953–974 (1999)

    Article  Google Scholar 

  3. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Edition physiques, Les Ulis, 1988)

    Google Scholar 

  4. V. Milanovic, Z. Ikonic, Equispaced-level Hamiltonians with the variable effective mass following the potential. Phys. R. B 54, 1998 (1996)

    Article  ADS  Google Scholar 

  5. O.M. Von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547 (1983)

    Article  ADS  Google Scholar 

  6. P. Rings, P. Schuck, Nucl. Many-Body Probl. (SpringerVerlag, New York, 1980)

    Book  Google Scholar 

  7. L.I. Serra, E. Lipparini, Spin response of unpolarized quantum dots. Europhysics. Letters 40, 667 (1997)

    Article  ADS  Google Scholar 

  8. A. Puente, L. Serra, M. Casas, Dipole excitation of Na clusters with a non-local energy density functional. Z Phys D-Atoms, Mol. Clust. 31, 283–286 (1994)

    Article  Google Scholar 

  9. M.R. Geller, W. Kohn, Quantum mechanics of electrons in crystals with graded composition. Phys. Rev. Lett. 70, 3103 (1993)

    Article  ADS  Google Scholar 

  10. F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Effective mass of one \(He^{4}\) atom in liquid \(He^{3}\). Phys. Rev. B 50, 4248 (1994)

    Article  ADS  Google Scholar 

  11. M. Barranco, M. Pi, S.M. Gatica, E.S. Hernandez, J. Navarro, Structure and energetics of mixed \(He^{4}-He^{3}\) drops. Phys. Rev. B 56, 8997 (1997)

    Article  ADS  Google Scholar 

  12. K. Samani, F. Loran, Shape invariant potentials for effective mass Schrödinger equation, quant-ph\(\backslash \)0302191v1, (2003)

  13. Y. Alhassid, F. Gursey, F. Iachello, Group theory approach to scattering. II the euclidean connection. Ann. Phys. 167, 181–200 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. G. Levai, Solvable potentials associated with su(1, 1) algebras: a systematic study. J. Phys. A: Math. Gen. 27, 3809 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J.W. Dabrowska, A. Khare, U.P. Sukhatme, Explicit wavefunctions for shape-invariant potentials by operator techniques. J. Phys. A: Math. Gen. 21, L195 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Levai, A search for shape-invariant solvable potentials. J. Phys. A: Math. Gen. 22, 689 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. R. De, R. Dutt, U. Sukhatme, Mapping of shape invariant potentials under point canonical transformations. J. Phys. A: Math. Gen. 25, L843 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Infeld, T.E. Hull, The factorization method. Rev. Mod. Phys. 23, 21 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. E. Witten, Dynamical breaking of supersymmetry. Nucl. Phys. B 185, 513–554 (1981)

    Article  ADS  MATH  Google Scholar 

  20. L.E. Gendenshtein, Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. JETP Lett. 38, 356 (1983)

    ADS  Google Scholar 

  21. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M.J. Engelfield, C. Quesne, Dynamical potential algebras for Gendenshtein and Morse potentials. J. Phys. A: Math. Gen. 24, 3557 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. V. Milanovic, Z. Ikonic, Generation of isospectral combinations of the potential and the effective-mass variations by supersymmetric quantum mechanics. J. Phys. A: Math. Gen. 32, 7001 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A.R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, Supersymmetric approach to quantum systems with position-dependent effective mass. Phys. Rev. A 60, 4318 (1999)

    Article  ADS  Google Scholar 

  25. B. Gonul, B. Gonul, D. Tutcu, O. Ozer, Supersymmetric approach to exactly solvable systems with position-dependent effective masses. Mod. Phys. Lett. A 17, 2057–2066 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. C. Quesne, V.M. Tkachuk, Moreon a SUSYQM approach to the harmonic oscillator with nonzero minimal uncertainties in position and/or momentum. J. Phys. A: Math. Gen. 37, 10095 (2004)

    Article  ADS  MATH  Google Scholar 

  27. B. Roy, P. Roy, A Lie algebraic approach to effective mass Schrödinger equations. J. Phys. A: Math. Gen. 35, 3691 (2002)

    Article  MATH  Google Scholar 

  28. C. Quesne, V.M. Tkachuk, Deformed algebras position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem. J. Phys. A: Math. Gen. 37, 4267 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. B. Bagchi, A. Banerjee, C. Quesne, V.M. Thachak, Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass. J. Phys. A: Math. Gen. 38, 2929–2945 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. R. Koc, M. Koca, A systematic study on the exact solution of the position dependent mass Schrödinger equation. J. Phys. A: Math. Gen. 36, 8105–8112 (2003)

    Article  ADS  MATH  Google Scholar 

  31. A.D. Alhaidari, Solutions of the nonrelativistic wave equation with position-dependent effective mass. Phys. Rev. A 66, 042116 (2002)

    Article  ADS  Google Scholar 

  32. B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, A general scheme for the effective-mass Schrödinger equation and the generation of the associated potentials. Mod. Phys. Lett. A 19(37), 2765–2775 (2004)

    Article  ADS  MATH  Google Scholar 

  33. B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, New approach to (quasi-) exactly solvable Schrödinger equations with a position-dependent effective mass. Europhys. Lett. 72, 155 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Panahi, Z. Bakhshi, Solvable potentials with position-dependent effective mass and constant mass Schrödinger equation. Acta Phys. Polonica B 41, 11 (2010)

    MATH  Google Scholar 

  35. X.Q. Zhao, C.S. Jia, Q.B. Yang, Bound states of relativistic particles in the generalized symmetrical double-well potential. Phys. Lett. A 337, 189–196 (2005)

    Article  ADS  MATH  Google Scholar 

  36. A.J. Peter, K. Navaneethakrishnan, Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot. Phys. E 40, 2747–2751 (2008)

    Article  Google Scholar 

  37. S. Rajashabala, K. Navaneethakrishnan, Effective masses for donor binding energies in non-magnetic and magnetic quantum well systems: effect of magnetic field. Braz. J. Phys. 37, 1134 (2007)

    Article  ADS  Google Scholar 

  38. S. Rajashabala, K. Navaneethakrishnan, Effective masses for donor binding energies in quantum well systems. Mod. Phys. Lett. B 24, 1529–1541 (2006)

    Article  ADS  MATH  Google Scholar 

  39. Y.X. Li, J.J. Liu, X.J. Kong, The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well with a magnetic field. J. Appl. Phys. 88, 2588 (2000)

    Article  ADS  Google Scholar 

  40. R. Khordad, B. Mirhosseini, Effect of variable effective mass on optical properties of quantum rod. Iran. J. Phys. Res. 13, 375 (2014)

    Google Scholar 

  41. G. Bastard, Superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693 (1981)

    Article  ADS  Google Scholar 

  42. Q.G. Zhu, H. Kroemer, Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys. Rev. B 27, 3519 (1983)

    Article  ADS  Google Scholar 

  43. T.L. Li, K. Kuhn, Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile of the \(GaAs-Al_{x}Ga_{1-x}As\) quantum well. J. Phys. Rev. B 47, 12760 (1993)

    Article  ADS  Google Scholar 

  44. W. Jr, Miller, Lie Theory of Special Functions (Academic, New York, 1968)

  45. H. Li, D. Kusnezov, Group theory approach to band structure: scarf and lamé hamiltonians. Phys. Rev. Lett. 83, 1283 (1999)

    Article  ADS  Google Scholar 

  46. J.-P. Antoine, J.-P. Gazeau, P. Monceau, J.R. Klauder, K.A. Penson, Temporally stable coherent states for infinite well and Pöschl-Teller potentials. J. Math. Phys. 42, 2349 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. D.E. Alvarez-Castillo, M. Kirchbach, Exact spectrum and wave functions of the hyperbolic Scarf potential in terms of finite Romanovski polynomials. Revista mexicana de física E 53, 143–154 (2007)

    MathSciNet  Google Scholar 

  48. B.N. Pratiwi, A. Suparmi, C. Cari, A.S. Husein, Asymptotic iteration method for the modified Pöschl-Teller potential and trigonometric scarf II non-central potential in the Dirac equation spin symmetry. Pramana-J. Phys. 88, 1–9 (2017)

    Article  Google Scholar 

  49. R.L. Brown, A method of calculating tunneling corrections for Eckart potential barriers. J. Res. Nat. Bur. Stand. 86, 20234 (1981)

    Google Scholar 

  50. N. Rosen, P.M. Morse, On the vibrations of polyatomic molecules. Phys. Rev. 42, 210 (1932)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Bakhshi.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, Z., Khoshdooni, S. Classification of quantum systems with position-dependent effective mass based on lie algebra and special functions. Eur. Phys. J. Plus 137, 931 (2022). https://doi.org/10.1140/epjp/s13360-022-03136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03136-1

Navigation