Skip to main content
Log in

Theoretical models of fracture deformation based on aperture distribution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The theory of rock fracture deformation is mainly based on the test, and the empirical formula has the parameters differences and inadequate theoretical logicality. Based on the processes of the fracture closure under normal stress and the fracture aperture distribution models including the power function form and normal function, the applied force causes the increase of the fracture contact area and the deformation modulus. Thus, we obtain the theoretical expression of force versus the deformation. We also propose a method that can predict the closure of the rock fracture contact area. The incremental area of fracture closure generated under each normal stress can be considered as the aperture increase effect corresponding to each displacement change amount to obtain the aperture distribution frequency corresponding to each stage load. The curves calculated by the theoretical models can fit well with the existing theoretical and experimental results, indicating that the proposed fracture deformation theory is reasonable. This paper expounds the fracture deformation theory, which has an important theoretical value for the rock mass engineering stability and the fracture seepage theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P. Yin, C. Zhao, J. Ma, C. Yan, L. Huang, Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique. Int. J. Rock Mech. Min. 129, 104293 (2020)

    Article  Google Scholar 

  2. J. Wang, H. Ma, J. Qian, P. Feng, X. Tan, L. Ma, Experimental and theoretical study on the seepage mechanism characteristics coupling with confining pressure. Eng. Geol. 291, 106224 (2021)

    Article  Google Scholar 

  3. D.F. Boutt, G. Grasselli, J.T. Fredrich, B.K. Cook, J.R. Williams, Trapping zones: The effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys. Res. Lett. (2006). https://doi.org/10.1029/2006GL027275

    Article  Google Scholar 

  4. L. Guo, X. Hu, L. Wu, X. Li, H. Ma, Simulation of fluid flow in fractured rocks based on the discrete fracture network model optimized by measured information. Int. J. Geomech. 18(10), 05018008 (2018)

    Article  Google Scholar 

  5. N. Huang, Y. Jiang, R. Liu, B. Li, S. Sugimoto, A novel three-dimensional discrete fracture network model for investigating the role of aperture heterogeneity on fluid flow through fractured rock masses. Int. J. Rock Mech. Min. 116, 25–37 (2019)

    Article  Google Scholar 

  6. L. Griffiths, M.J. Heap, F. Wang, D. Daval, H.A. Gilg, P. Baud, A. Genter, Geothermal implications for fracture-filling hydrothermal precipitation. Geothermics 64, 235–245 (2016)

    Article  Google Scholar 

  7. B. Dewandel, M. Alazard, P. Lachassagne, V. Bailly-Comte, R. Couëffé, S. Grataloup, R. Wyns, Respective roles of the weathering profile and the tectonic fractures in the structure and functioning of crystalline thermo-mineral carbo-gaseous aquifers. J. Hydrol. 547, 690–707 (2017)

    Article  ADS  Google Scholar 

  8. Y. Chen, G. Ma, H. Wang, T. Li, Y. Wang, Application of carbon dioxide as working fluid in geothermal development considering a complex fractured system. Energy Convers. Manage. 180, 1055–1067 (2019)

    Article  Google Scholar 

  9. Y. Chen, G. Ma, H. Wang, T. Li, Evaluation of geothermal development in fractured hot dry rock based on three dimensional unified pipe-network method. Appl. Therm. Eng. 136, 219–228 (2018)

    Article  Google Scholar 

  10. L. Zeng, H. Su, X. Tang, Y. Peng, L. Gong, Fractured tight sandstone oil and gas reservoirs: a new play type in the Dongpu depression, Bohai Bay Basin, China. AAPG Bull. 97(3), 363–377 (2013)

    Article  Google Scholar 

  11. Sharma MM, Manchanda R. in The role of induced un-propped (IU) fractures in unconventional oil and gas wells. SPE Annual Technical Conference and Exhibition. OnePetro. (2015).

  12. L. Zou, L. Jing, V. Cvetkovic, Roughness decomposition and nonlinear fluid flow in a single rock fracture. Int. J. Rock Mech. Min. 75, 102–118 (2015)

    Article  Google Scholar 

  13. E. Bonaccurso, H.-J. Butt, V.S. Craig, Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phys. Rev. Lett. (2003). https://doi.org/10.1103/PhysRevLett.90.144501

    Article  Google Scholar 

  14. Y.W. Tsang, P.A. Witherspoon, The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size. J. Geophys. Res.-Sol Ea. 88(B3), 2359–2366 (1983)

    Article  ADS  Google Scholar 

  15. S.G. Kandlikar, S. Joshi, S. Tian, Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes. Heat Transf. Eng. 24(3), 4–16 (2003)

    Article  ADS  Google Scholar 

  16. S.R. Brown, Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res.-Sol Ea. 92(B2), 1337–1347 (1987)

    Article  ADS  Google Scholar 

  17. H.K. Singh, A. Basu, Evaluation of existing criteria in estimating shear strength of natural rock discontinuities. Eng. Geol. 232, 171–181 (2018)

    Article  Google Scholar 

  18. R.E. Goodman, Introduction to rock mechanics (Wiley, New York, 1989)

    Google Scholar 

  19. N. Barton, V. Choubey, The shear strength of rock joints in theory and practice. Rock Mech. 10(1), 1–54 (1977)

    Article  Google Scholar 

  20. G. Preisig, E. Eberhardt, M. Smithyman, A. Preh, L. Bonzanigo, Hydromechanical rock mass fatigue in deep-seated landslides accompanying seasonal variations in pore pressures. Rock Mech. Rock Eng. 49(6), 2333–2351 (2016)

    Article  ADS  Google Scholar 

  21. V. Gischig, G. Preisig, E. Eberhardt, Numerical investigation of seismically induced rock mass fatigue as a mechanism contributing to the progressive failure of deep-seated landslides. Rock Mech. Rock Eng. 49(6), 2457–2478 (2016)

    Article  ADS  Google Scholar 

  22. M. Berti, L. Bertello, A.R. Bernardi, G. Caputo, Back analysis of a large landslide in a flysch rock mass. Landslides 14(6), 2041–2058 (2017)

    Article  Google Scholar 

  23. A. Kayabasi, N. Yesiloglu-Gultekin, C. Gokceoglu, Use of non-linear prediction tools to assess rock mass permeability using various discontinuity parameters. Eng. Geol. 185, 1–9 (2015)

    Article  Google Scholar 

  24. Q. He, F.T. Suorineni, T. Ma, J. Oh, Effect of discontinuity stress shadows on hydraulic fracture re-orientation. Int. J. Rock Mech. Min. 91, 179–194 (2017)

    Article  Google Scholar 

  25. J. Shang, S.R. Hencher, L.J. West, Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins. Rock Mech. Rock Eng. 49(11), 4213–4225 (2016)

    Article  ADS  Google Scholar 

  26. R.E. Goodman, Methods of geological engineering in discontinuous rocks (West Publishing Company, New York, NY, USA, 1976)

    Google Scholar 

  27. S.C. Bandis, A.C. Lumsden, N.R. Barton, Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20, 249–268 (1983)

    Article  Google Scholar 

  28. G.Z. Sun, W.Z. Lin, The compresstional deformation law of rockmass structure surface and a constitutive equation of rockmass elastic deformation. China J. Geology. 2, 81–87 (1983). (in Chinese)

    Google Scholar 

  29. G. Rong, K. Huang, C. Zhou, X. Wang, J. Peng, A new constitutive law for the nonlinear normal deformation of rock joints under normal load. Sci. China Technol. Sci. 55(2), 555–567 (2012)

    Article  ADS  Google Scholar 

  30. K. Matsuki, E.Q. Wang, K. Sakaguchi, K. Okumura, Time-dependent closure of a fracture with rough surfaces under constant normal stress. Int. J. Rock Mech. Min. 38(5), 607–619 (2001)

    Article  Google Scholar 

  31. B. Malama, P.H. Kulatilake, Models for normal fracture deformation under compressive loading. Int. J. Rock Mech. Min. 40(6), 893–901 (2003)

    Article  Google Scholar 

  32. Z. Jianmin, X. Hongfa, Y. Hong-yu, Power function model of normal deformation for rock joints. Chin. J. Rock Mech. Eng. 19, 853–855 (2000). (in Chinese)

    Google Scholar 

  33. J. Yu, X.B. Zhao, W.B. Zhao, X.Z. Li, Y.F. Guan, Improved nonlinear elastic constitutive model for normal deformation of rock fractures. Chin. J. Geo. Eng. 30(9), 1 (2008). (in Chinese)

    ADS  Google Scholar 

  34. P.A. Selvadurai, S.D. Glaser, Laboratory-developed contact models controlling instability on frictional faults. J. Geophys. Res.-Sol. Earth. 120(6), 4208–4236 (2015)

    Article  ADS  Google Scholar 

  35. S. Saltiel, P.A. Selvadurai, B.P. Bonner, S.D. Glaser, J.B. Ajo-Franklin, Experimental development of low-frequency shear modulus and attenuation measurements in mated rock fractures: Shear mechanics due to asperity contact area changes with normal stress. Geophysics 82(2), M19–M36 (2017)

    Article  Google Scholar 

  36. S. Choi, B. Jeon, S. Lee, S. Jeon, Experimental study on hydromechanical behavior of an artificial rock joint with controlled roughness. Sustain.-Basel. 11(4), 1014 (2019)

    Article  Google Scholar 

  37. K. Nemoto, N. Watanabe, N. Hirano, N. Tsuchiya, Direct measurement of contact area and stress dependence of anisotropic flow through rock fracture with heterogeneous aperture distribution. Earth Planet. Sci. Lett. 281(1–2), 81–87 (2009). https://doi.org/10.1016/j.epsl.2009.02.005

    Article  ADS  Google Scholar 

  38. K. Iwai, Fundamental studies of fluid flow through a single fracture (University of California, Berkeley, 1976)

    Google Scholar 

  39. R.M. Stesky, S.S. Hannan, Growth of contact area between rough surfaces under normal stress. Geophys. Res. Lett. 14(5), 550–553 (1987)

    Article  ADS  Google Scholar 

  40. J. Gong, W.R. Rossen, Modeling flow in naturally fractured reservoirs: effect of fracture aperture distribution on dominant sub-network for flow. Petrol Sci. 14(1), 138–154 (2017)

    Article  Google Scholar 

  41. H.H. Arsenault, G. April, Properties of speckle integrated with a finite aperture and logarithmically transformed. JOSA. 66(11), 1160–1163 (1976)

    Article  ADS  Google Scholar 

  42. G. Margolin, B. Berkowitz, H. Scher, Structure, flow, and generalized conductivity scaling in fracture networks. Water Resour. Res. 34(9), 2103–2121 (1998)

    Article  ADS  Google Scholar 

  43. F. Bauget, M. Fourar, Non-Fickian dispersion in a single fracture. J. Contam Hydrol. 100(3–4), 137–148 (2008)

    Article  ADS  Google Scholar 

  44. L. Zou, V. Cvetkovic, Impact of normal stress-induced closure on laboratory-scale solute transport in a natural rock fracture. J. Rock Mech. Geotech. 12(4), 732–741 (2020)

    Article  Google Scholar 

  45. Barton CC, Hsieh PA. Physical and Hydrologic-Flow Properties of Fractures: Las Vegas, Nevada-Zion Canyon, Utah-Grand Canyon, Arizona-Yucca Mountain, Nevada, July 1991;20–24:1989.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41831289, 41772250, and 41877191). The authors also thank the anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Feng, P., Qian, J. et al. Theoretical models of fracture deformation based on aperture distribution. Eur. Phys. J. Plus 137, 898 (2022). https://doi.org/10.1140/epjp/s13360-022-03129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03129-0

Navigation