Skip to main content
Log in

Relativistic density operators: Dirac dynamics, open quantum systems and non-standard neutrino interactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Correction to this article was published on 10 November 2022

This article has been updated

Abstract

In the present work we propose the correct covariant density operator formalism for half spin particles as an extension of the standard Dirac equation. We discuss the possibility of extending said formalism to the description of relativistic open quantum systems yet we arrive at the unavoidable conclusion that this is simply unfeasible due to the nature of Lorentz symmetry, even so, we show how a Lindblad-type eq. can be recovered in the non-relativistic limit of our theory. Finally making use of the new formalism presented here we describe the time evolution of a beam of solar neutrinos and obtain certain constraints congruent with experimental measurements, on the intensity of possible non-standard interactions affecting the physics of flavour oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Change history

Notes

  1. If we consider a full sum over a set of operators \(\sum _k\tilde{\mathcal {C}}_k\bar{\rho }^{\dag }\gamma ^0\mathcal {C}^{\dag }_k=\left( \varLambda ^{\dag }_{\frac{1}{2}}\varLambda _{\frac{1}{2}}\right) \sum _k\left( \tilde{\mathcal {C}}_k\gamma ^0\bar{\rho }\mathcal {C}^{\dag }_k\right) \left( \varLambda ^{\dag }_{\frac{1}{2}}\varLambda _{\frac{1}{2}}\right) ^{-1}\) this eq. has another possible solution given by \(\sum _k\tilde{\mathcal {C}}_k\gamma ^0\hat{\rho }\gamma ^0\mathcal {C}_k^{\dag }=\text {tr}_s(\hat{\rho }\gamma ^0)I_{4\times 4}\) but this requires that \(\tilde{\mathcal {C}}_k\ne \mathcal {C}_k\) and thus is a more general case which is laid outside of our discussion.

References

  1. A. Peres, P.F. Scudo, D.R. Terno, Quantum entropy and special relativity. Phys. Rev. Lett. 88, 230402 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. P.L. Saldanha, V. Vedral, Physical interpretation of the Wigner rotations and its implications for relativistic quantum information. New J. Phys. 14(2), 023041 (2012)

    Article  ADS  MATH  Google Scholar 

  3. P.A.M. Dirac, The quantum theory of the electron. Proc. Roy. Soc. Lond. A A117, 610–624 (1928)

    ADS  MATH  Google Scholar 

  4. R. Cabrera, A.G. Campos, D.I. Bondar, H.A. Rabitz, Dirac open-quantum-system dynamics: Formulations and simulations. Phys. Rev. A 94, 052111 (2016)

    Article  ADS  Google Scholar 

  5. E.R.F. Taillebois, A.T. Avelar, Spin-reduced density matrices for relativistic particles. Phys. Rev. A 88, 060302 (2013)

    Article  ADS  Google Scholar 

  6. B. Rosenstein, L.P. Horwitz, Probability current versus charge current of a relativistic particle. J. Phys. A: Math. Gen. 18(11), 2115–2121 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  7. S.E. Hoffmann, No relativistic Newton-Wigner probability current for any spin. J. Phys. A: Math. Theor. 52(22), 225301 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.D. Bjorken, S.D. Drell, Relativistic quantum mechanics. International series in pure and applied physics (McGraw-Hill, New York, 1964)

    Google Scholar 

  9. W. Greiner, D.A. Bromley, Relativistic Quantum Mechanics: Wave Equations. Theoretical physics : text and exercise books (Springer, Berlin, 1990)

    Google Scholar 

  10. W. Greiner, J. Reinhardt, D.A. Bromley, Field Quantization (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  11. A. Messiah, Quantum Mechanics. Number v. 2 in Dover books on physics. Dover Publications (1999)

  12. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  13. H. Carmichael, An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles, October 28 to November 4, 1991. Number v. 18 in An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles, 1991. Springer Berlin Heidelberg (1993)

  14. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications. Lecture notes in physics. Springer-Verlag (1987)

  15. H. Spohn, Kinetic equations from hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52, 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. L.L. Foldy, S.A. Wouthuysen, On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit. Phys. Rev. 78, 29–36 (1950)

    Article  ADS  MATH  Google Scholar 

  17. A.J. Silenko, Foldy-Wouthuysen transformation for relativistic particles in external fields. J. Math. Phys. 44(7), 2952–2966 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D. Chiou, T. Chen, Exact Foldy-Wouthuysen transformation of the Dirac-Pauli Hamiltonian in the weak-field limit by the method of direct perturbation theory. Phys. Rev. A 94, 052116 (2016)

    Article  ADS  Google Scholar 

  19. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4(11), 878–883 (2008)

    Article  Google Scholar 

  20. D.K. Ferry, A.M. Burke, R. Akis, R. Brunner, T.E. Day, R. Meisels, F. Kuchar, J.P. Bird, B.R. Bennett, Open quantum dots—probing the quantum to classical transition. Semicond. Sci. Technol. 26(4), 043001 (2011)

    Article  ADS  Google Scholar 

  21. I. Rotter, J.P. Bird, A review of progress in the physics of open quantum systems: theory and experiment. Rep. Prog. Phys. 78(11), 114001 (2015)

    Article  ADS  Google Scholar 

  22. The Borexino Collaboration, Comprehensive measurement of \(pp\)-chain solar neutrinos. Nature 562(7728), 505–510 (2018)

  23. P.A. Zyla et al., Particle data group, review of particle physics. Progress Theoret. Exp. Phys. 8, 2020 (2020)

    Google Scholar 

  24. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, E.C.G. Sudarshan, Properties of quantum Markovian master equations. Rep. Math. Phys. 13(2), 149–173 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. T. Heinosaari, M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  28. M. M. Wolf, Quantum Channels and Operations-Guided Tour. Lecture notes, available at http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/ MichaelWolf/QChannelLecture.pdf, (2012)

  29. A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction. De Gruyter Studies in Mathematical Physics. De Gruyter, (2012)

  30. J.I. Castro Alatorre, The relativistic Von-Neumann equation and Dirac ensembles (Master Thesis). Benemérita Universidad Autónoma de Puebla, Puebla, México (2018). www.bibliocatalogo.buap.mx/record=b1427263

  31. V. B. Berestetskii, L.D. Landau, Interaction between the electron and the positron. Zhur. Eksptl. i Teoret. Fiz., 19 (1949)

  32. E. Sadurní, J.M. Torres, T.H. Seligman, Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems. J. Phys. A: Math. Theor. 43(28), 285204 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. Guenther, P. Demarque, Y. Kim, M. Pinsonneault. Standard solar model. ApJ, 387 (1992)

  34. J.N. Bahcall, Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra, and predicted event rates. Phys. Rev. C 56, 3391–3409 (1997)

    Article  ADS  Google Scholar 

  35. The Borexino Collaboration, Neutrinos from the primary proton-proton fusion process in the sun. Nature 512, 383–386 (2014)

  36. A. Ianni, Detection of MeV scale neutrinos and the solar energy paradigm. J. Phys: Conf. Ser. 940, 012023 (2018)

    Google Scholar 

  37. V. Barger, D. Marfatia, K. Whisnant, The Physics of Neutrinos. Princeton University Press, (2012)

  38. S.P. Mikheev, A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Sov. J. Nucl. Phys. (Engl. Transl.), (United States), 42(6), (1985)

  39. L. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978)

    Article  ADS  Google Scholar 

  40. L. Wolfenstein, Neutrino oscillations and stellar collapse. Phys. Rev. D 20, 2634–2635 (1979)

    Article  ADS  Google Scholar 

  41. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 34, 247 (1957)

    Google Scholar 

  42. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the Unified Model of Elementary Particles. Progress Theoret. Phys. 28(5), 870–880 (1962)

    Article  ADS  MATH  Google Scholar 

  43. C.M. Bender, Making sense of non-hermitian hamiltonians. Rep. Prog. Phys. 70(6), 947–1018 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. The KATRIN Collaboration, First direct neutrino-mass measurement with sub-eV sensitivity. Nature Physics 18, 160166 (2022)

  45. The KamLAND Collaboration, Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion. Phys. Rev. Lett. 94, 081801 (2005)

  46. The SNO Collaboration, Measurement of the \({\nu }_{e}\) and total \({}^{8}\)B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set. Phys. Rev. C 87, 015502 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rosado González.

Additional information

The original online version of this article was revised to correct latex conversion mistakes in equations throughout the article.

Appendix A: Consistency and reality conditions for the Lagrangian density functional of the DvN equation

Appendix A: Consistency and reality conditions for the Lagrangian density functional of the DvN equation

From the Lagrangian density of the total system (31), we obtain the eqs. of motion, for the Dirac field these are

$$\begin{aligned} \frac{\partial \mathscr {L}}{\partial \bar{\varPsi }}-\partial _{\mu }\left( \frac{\partial \mathscr {L}}{\partial (\partial _{\mu }\bar{\varPsi })}\right)= & {} \left( i\gamma ^{\mu }\overrightarrow{\partial }_{\mu }-\gamma ^{\mu }A_{\mu }-m\right) \varPsi +\frac{\partial \mathscr {L}_{\text {S}}}{\partial \bar{\varPsi }}-\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\bar{\varPsi })}\right) =0, \end{aligned}$$
(A.1)
$$\begin{aligned} \frac{\partial \mathscr {L}}{\partial \varPsi }-\partial _{\mu }\left( \frac{\partial \mathscr {L}}{\partial (\partial _{\mu }\varPsi )}\right)= & {} -\bar{\varPsi }\left( i\gamma ^{\mu }\overleftarrow{\partial }_{\mu }+\gamma ^{\mu }A_{\mu }+m\right) +\frac{\partial \mathscr {L}_{\text {S}}}{\partial \varPsi }-\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\varPsi )}\right) =0. \end{aligned}$$
(A.2)

In order to recover the DvN eq. with the source term (14) and to ensure the consistency of (A.1) and (A.2), that is, that they be complex conjugates one of the other, the Lagrangian contribution of the source term must satisfy the following conditions

$$\begin{aligned}&\frac{\partial \mathscr {L}_{\text {S}}}{\partial \bar{\varPsi }}-\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\bar{\varPsi })}\right) =-\bar{\mathcal {F}}\varPsi , \end{aligned}$$
(A.3)
$$\begin{aligned}&\frac{\partial \mathscr {L}_{\text {S}}}{\partial \varPsi }-\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\varPsi )}\right) =-\bar{\varPsi }\gamma ^0\bar{\mathcal {F}}^{\dag }\gamma ^0, \end{aligned}$$
(A.4)

if we multiply (A.3) by \(\bar{\varPsi }\) from the left and (A.4) by \(\varPsi \) from the right, we can rewrite them as

$$\begin{aligned}&-\bar{\varPsi }\frac{\partial \mathscr {L}_{\text {S}}}{\partial \bar{\varPsi }}+\bar{\varPsi }\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\bar{\varPsi })}\right) =\bar{\varPsi }\bar{\mathcal {F}}\varPsi , \end{aligned}$$
(A.5)
$$\begin{aligned}&-\frac{\partial \mathscr {L}_{\text {S}}}{\partial \varPsi }\varPsi +\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\varPsi )}\right) \varPsi =(\bar{\varPsi }\bar{\mathcal {F}}\varPsi )^{\dag }, \end{aligned}$$
(A.6)

which immediately implies

$$\begin{aligned} \frac{\partial \mathscr {L}_{\text {S}}}{\partial \varPsi }\varPsi -\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\varPsi )}\right) \varPsi =\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial \bar{\varPsi }}\right) ^{\dag }\gamma ^0\varPsi -\partial _{\mu }\left( \frac{\partial \mathscr {L}_{\text {S}}}{\partial (\partial _{\mu }\bar{\varPsi })}\right) ^{\dag }\gamma ^0\varPsi . \end{aligned}$$
(A.7)

And simplifying the previous eq. in terms of Wirtinger derivatives it takes the form

$$\begin{aligned} \frac{\partial \text {Im}\{\mathscr {L}_{\text {S}}\}}{\partial \text {Im}\{\varPsi _s\}}+i\frac{\partial \text {Im}\{\mathscr {L}_{\text {S}}\}}{\partial \text {Re}\{\varPsi _s\}}-\partial _{\mu }\left( \frac{\partial \text {Im}\{\mathscr {L}_{\text {S}}\}}{\partial (\partial _{\mu }\text {Im}\{\varPsi _s\})}+i\frac{\partial \text {Im}\{\mathscr {L}_{\text {S}}\}}{\partial (\partial _{\mu }\text {Re}\{\varPsi _s\})}\right) =0. \end{aligned}$$
(A.8)

Therefore if the eqs. (A.3), (A.4) are valid, the only necessary condition \(\mathscr {L}_{\text {S}}\) must satisfy, in order to recover the DvN equation, is that its imaginary part must be solution to the differential eq. (A.8). In particular, it can be seen that \(\text {Im}\{\mathscr {L}_{\text {S}}\}=0\) is a trivial solution, which tells us that it is always possible to take the Lagrangian density of the total system as as a real functional and still obtain the desired formalism.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, A.S.R., Castro-Alatorre, J.I. & Sadurní, E. Relativistic density operators: Dirac dynamics, open quantum systems and non-standard neutrino interactions. Eur. Phys. J. Plus 137, 917 (2022). https://doi.org/10.1140/epjp/s13360-022-03111-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03111-w

Navigation