Skip to main content
Log in

Solving Benjamin–Ono equation via gradient balanced PINNs approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Soliton solution of Benjamin–Ono (BO) equation has considerable applications in physical field. In this paper, we utilize the Physics-informed neural networks (PINNs) to solve the soliton solution of the BO equation firstly. However, we discern that the imbalance phenomenon of back-propagated gradients occurs between residual loss and initial values or boundary conditions, which leads to the loss function failing to converge well during model training. In order to overcome the faultiness, we introduce self-adaptive parameters into the loss function in PINNs to balance the effect between different terms in original loss function, namely Gradient Balanced PINNs approach. By comparing the performance of solving BO equation, numerical results showed that the prediction accuracy of improved method has improved significantly and absolute error is reduced by order of magnitude. Finally, relevant results have been exhibited in tables and diagrams, dynamical behaviors and error analysis by employing two methods are revealed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’comment: The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)

    Article  ADS  Google Scholar 

  2. N. Yadav, A. Yadav, M. Kumar, et al., An introduction to neural network methods for differential equations, Springer (2015)

  3. Z. Liu, Y. Yang, Q. Cai, Neural network as a function approximator and its application in solving differential equations. Appl. Math. Mech. 40, 237–248 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Han, A. Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115, 8505–8510 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10, 195–201 (1994)

    Article  MATH  Google Scholar 

  6. M. Raissi, G.E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, Deepxde: a deep learning library for solving differential equations. SIAM Rev. 63, 208–228 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey. J. Marchine Learn. Res. 18, 1–43 (2018)

    MATH  Google Scholar 

  9. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. Wang, H. Zhang, X. Jiang, Fractional physics-informed neural networks for timefractional phase field models (2021)

  11. L. Yang, D. Zhang, G.E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations. SIAM J. Sci. Comput. 42, A292–A317 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Zhang, L. Guo, G.E. Karniadakis, Learning in modal space: Solving time-dependent stochastic pdes using physics-informed neural networks. SIAM J. Sci. Comput. 42, A639–A665 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Pang, L. Lu, G.E. Karniadakis, fpinns: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 41, A2603–A2626 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. 379, 113741 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Vahab, E. Haghighat, M. Khaleghi, N. Khalili, A Physics-Informed Neural network approach to solution and identification of biharmonic equations of elasticity. J. Eng. Mech. 148(2), 04021154 (2022)

    Google Scholar 

  16. A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proceed. Royal Soc. A 476, 20200334 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J. Sci. Comput. 43, A3055–A3081 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems. Comput. Methods Appl. Mech. Engrg. 365, 113028 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A.D. Jagtap, G.E. Karniadakis, Extended Physics-InformedNeuralNetworks (XPINNs): a Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations. Commun. Comput. Phys. 28(5), 2002–2041 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Yang, X. Meng, G.E. Karniadakis, B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 425, 109913 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Mattey, S. Ghosh, A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations. Comput. Methods Appl. Mech. Engrg. 390, 114474 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Gui-zhang, On liouville integrability of zero-curvature equations and the yang hierarchy. J. Phys. A: Math. Gen. 22, 2375 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J.C. Pu, J. Li, Y. Chen, Soliton, breather, and rogue wave solutions for solving the nonlinear schr odinger equation using a deep learning method with physical constraints. Chin. Phys. B 30(6), 060202 (2021)

    Article  ADS  Google Scholar 

  25. L. Wang, Z. Yan, Data-driven rogue waves and parameter discovery in the defocusing nonlinear schrödinger equation with a potential using the PINN deep learning. Phys. Lett. A 404, 127408 (2021)

    Article  MATH  Google Scholar 

  26. Y. Fang, G.-Z. Wu, Y.-Y. Wang, C.-Q. Dai, Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105(1), 603–616 (2021)

    Article  Google Scholar 

  27. J. Pu, J. Li, Y. Chen, Solving localized wave solutions of the derivative nonlinear schrödinger equation using an improved pinn method. Nonlinear Dyn. 105(2), 1–17 (2021)

    Article  Google Scholar 

  28. J. Li, J. Chen, B. Li, Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving the complex modified KdV equation. Nonlinear Dyn. 107(1), 781–792 (2022)

    Article  Google Scholar 

  29. Y. Mo, L. Ling, D. Zeng, Data-driven vector soliton solutions of coupled nonlinear schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127739 (2022)

    Article  MATH  Google Scholar 

  30. Y.S. Kivshar, B.A. Malomed, Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  ADS  Google Scholar 

  31. N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  MATH  Google Scholar 

  32. Z. Chen, M. Segev, D.N. Christodoulides, Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)

    Article  ADS  Google Scholar 

  33. S. Forte, Quantum mechanics and field theory with fractional spin and statistics. Rev. Mod. Phys. 64, 193–236 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. P.D. Drummond, K.V. Kheruntsyan, H. He, Coherent molecular solitons in bose-einstein condensates. Phys. Rev. Lett. 81, 3055–3058 (1998)

    Article  ADS  Google Scholar 

  35. C. Markos, J.C. Travers, A. Abdolvand, B.J. Eggleton, O. Bang, Hybrid photonic-crystal fiber. Rev. Mod. Phys. 89, 045003 (2017)

    Article  ADS  Google Scholar 

  36. S. Lou, F. Huang, Alice-bob physics: coherent solutions of nonlocal kdv systems. Sci. Rep. 7, 1–11 (2017)

    Article  ADS  Google Scholar 

  37. D. David, D. Levi, P. Winternitz, Solitons in shallow seas of variable depth and in marine straits. Stud. Appl. Math. 80, 1–23 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Ablowitz, P. Clarkson, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 (Cambridge University Press, Cambridge, 1991)

    Book  MATH  Google Scholar 

  39. R. Hermann, The geometry of non-linear differential equations, Bäcklund transformations, and solitons. (Math Science Press, 1976)

  40. R. Hirota, The Direct Method in Soliton Theory, 155 (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  41. X. Wang, L. Wang, J. Wei, B. Guo, J. Kang, Rogue waves in the three-level defocusing coupled Maxwell-Bloch equations. Proc. R. Soc. A. 477, 20210585 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  42. X. Wang, J. Li, L. Wang, J. Kang, Dark-dark solitons, soliton molecules and elastic collisions in the mixed three-level coupled Maxwell-Bloch equations. Phys. Lett. A 432, 128023 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. John, Weiss, M., Tabor, George, Carnevale, The painlevé property for partial differential equations, J. Math. Phys. 24(3) (1983) 522-526

  44. J. Luo, E. Fan, \(\bar{\partial }\)-dressing method for the coupled gerdjikov-ivanov equation. Appl. Math. Lett. 110, 106589 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Xu, E. Fan, Long-time asymptotics for the fokas-lenells equation with decaying initial value problem: without solitons. J. Differen. Equs. 259, 1098–1148 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. W. Peng, J. Pu, Y. Chen, Pinn deep learning method for the chen-lee-liu equation: rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Benjamin, Brooke, Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–592 (1967)

    Article  ADS  MATH  Google Scholar 

  48. Hiroaki Ono, Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. C.-M. Fang, S.-F. Tian, Y. Feng, J.-H. Dai, On the integrability and riemann theta functions periodic wave solutions of the benjamin ono equation. Nonlinear Dyn. 92, 235–246 (2018)

    Article  MATH  Google Scholar 

  50. W. Tan, Z. Dai, Spatiotemporal dynamics of lump solution to the (1+ 1)-dimensional benjamin-ono equation. Nonlinear Dyn. 89, 2723–2728 (2017)

    Article  MathSciNet  Google Scholar 

  51. Y.-K. Liu, B. Li, Dynamics of rogue waves on multisoliton background in the benjamin ono equation. Pramana 88, 57 (2017)

    Article  ADS  Google Scholar 

  52. S. Singh, K. Sakkaravarthi, K. Murugesan, R. Sakthivel, Benjamin-ono equation: Rogue waves, generalized breathers, soliton bending, fission, and fusion. Europ. Phys. J. Plus 135, 1–17 (2020)

    Article  Google Scholar 

  53. Diederik P. Kingma, Ba. Jimmy, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  54. Zixue Xiang, Wei Peng, Xiaohu Zheng, Xiaoyu Zhao, Wen Yao, Self-adaptive loss balanced Physics-informed neural networks for the incompressible Navier-Stokes equations, arXiv preprint arXiv:2104.06217 (2021)

  55. Z. Chen, V. Badrinarayanan, C. Y. Lee, A. Rabinovich, Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning (pp. 794-803). PMLR (2018)

  56. A. A. Heydari, C. A. Thompson, A. Mehmood, Softadapt: Techniques for adaptive loss weighting of neural networks with multi-part loss functions. arXiv preprint arXiv:1912.12355 (2019)

  57. R. Bischof, M. Kraus, Multi-objective loss balancing for physics-informed deep learning. arXiv preprint arXiv:2110.09813 (2021)

  58. L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv preprint arXiv:2009.04544 (2020)

  59. Sifan Wang, Yu. Xinling, Paris Perdikaris, When and why PINNs fail to train: a neural tangent kernel perspective. J. Comput. Phys. 449, 110768 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Project supported by National Natural Science Foundation of China (Grant Nos. 52171251, U2106225), LiaoNing Revitalization Talents Program (XLYC1907014) and the Fundamental Research Funds for the Central Universities (DUT21ZD205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, Z. Solving Benjamin–Ono equation via gradient balanced PINNs approach. Eur. Phys. J. Plus 137, 864 (2022). https://doi.org/10.1140/epjp/s13360-022-03078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03078-8

Navigation