Skip to main content
Log in

Asymmetric quantum synchronization generation in antiferromagnet-cavity systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Sensitive signal detection and processing in classical world, especially in quantum regime, requires asymmetric manipulation. In this paper we show how to achieve asymmetric quantum synchronization for two magnon modes in a two-sublattice antiferromagnet with strong isolation. The antiferromagnet is trapped in a cavity with two posts so that the two magnon modes not only couple to each other through a parametric-type interaction, but also interact with a same cavity, respectively, in a beam splitter-type and parametric-type ways. Under the condition of system’s stability, we show that asymmetric quantum synchronization between two magnon modes is mainly dependent on resonance frequency of the cavity caused by direction of input currents. In addition, quantum synchronization is enhanced by the increase of interaction strength between two Bogoliubov modes and cavity mode. Moreover, numerical simulation results with parameters commonly used in current experiments show that the present scheme may be feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Huygens, O Euvres complètes de Christiaan Huygens (Martinus Nijhoff, The Hague, 1893)

    Google Scholar 

  2. A. Mari, A. Farace, N. Didier, V. Giovannetti, R. Fazio, Phys. Rev. Lett. 111, 103605 (2013)

  3. V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, V. Giovannetti, R. Fazio, Phys. Rev. A 91, 012301 (2015)

  4. O.V. Zhirov, D.L. Shepelyansky, Phys. Rev. B 80, 014519 (2009)

  5. M. Xu, M.J. Holland, Phys. Rev. Lett. 114, 103601 (2015)

  6. M.R. Hush, W. Li, S. Genway, I. Lesanovsky, A.D. Armour, Phys. Rev. A 91, 061401 (2015)

  7. M. Xu, D.A. Tieri, E.C. Fine, J.K. Thompson, M.J. Holland, Phys. Rev. Lett. 113, 154101 (2014)

  8. H. Qiu, R. Zambrini, A. Polls, J. Martorell, and B. Juliá-Díaz, Phys. Rev. A 92, 043619 (2015)

  9. S. Walter, A. Nunnenkamp, C. Bruder, Phys. Rev. Lett. 112, 094102 (2014)

  10. T.E. Lee, C.K. Chan, S. Wang, Phys. Rev. E 89, 022913 (2014)

  11. T.E. Lee, H.R. Sadeghpour, Phys. Rev. Lett. 111, 234101 (2013)

  12. T. Weiss, S. Walter, F. Marquardt, Phys. Rev. A 95, 041802 (2017)

  13. W. Stefan, N. Andreas, B. Christoph, Ann. Phys. 527, 131 (2015)

    Article  MathSciNet  Google Scholar 

  14. G.M. Xue, M. Gong, H.K. Xu, W.Y. Liu, H. Deng, Y. Tian, H.F. Yu, Y. Yu, D.N. Zheng, S.P. Zhao, S. Han, Phys. Rev. B 90, 224505 (2014)

  15. S.E. Nigg, Phys. Rev. A 97, 013811 (2018)

  16. G.J. Qiao, X.Y. Liu, H.D. Liu, C.F. Sun, X.X. Yi, Phys. Rev. A 101, 053813 (2020)

  17. S. Sonar, M. Hajdusek, M. Mukherjee, R. Fazio, V. Vedral, S. Vinjanampathy, and L.-C. Kwek, Phys. Rev. Lett. 120, 163601 (2018)

  18. G.J. Qiao, H.X. Gao, H.D. Liu, X.X. Yi, Sci. Rep. 8, 15614 (2018)

    Article  ADS  Google Scholar 

  19. W. Li, C. Li, H. Song, Phys. Rev. E 95, 022204 (2017)

  20. K. Shlomi, D. Yuvaraj, I. Baskin, O. Suchoi, R. Winik, E. Buks, Phys. Rev. E 91, 032910 (2015)

  21. E. Amitai, N. Lorch, A. Nunnenkamp, S. Walter, and C. Bruder, Phys. Rev. A 95, 053858 (2017)

  22. A. Mari, J. Eisert, New J. Phys. 14, 075014 (2012)

  23. A. Mari, J. Eisert, Phys. Rev. Lett. 103, 213603 (2009)

  24. L. Du, C.H. Fan, H.X. Zhang, J.H. Wu, Sci. Rep. 7, 15834 (2017)

    Article  ADS  Google Scholar 

  25. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller, Nature (London) 541, 473 (2017)

    Article  ADS  Google Scholar 

  26. C. Gonzalez-Ballestero, A. Gonzalez-Tudela, F.J. GarciaVidal, E. Moreno, Phys. Rev. B 92, 155304 (2015)

  27. S.A.H. Gangaraj, G.W. Hanson, M. Antezza, Phys. Rev. A 95, 063807 (2017)

  28. G. Hu, X. Hong, K. Wang, J. Wu, H.X. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, C.W. Qiu, Nat. Photon. 13, 467 (2019)

    Article  ADS  Google Scholar 

  29. H.J. Kimble, Nature (London) 453, 1023 (2008)

    Article  ADS  Google Scholar 

  30. R. Fleury, D. Sounas, A. Alu, Nat. Commun. 6, 5905 (2015)

    Article  ADS  Google Scholar 

  31. T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J.T.L. Thong, C.W. Qiu, Adv. Mater. 27, 7752 (2015)

    Article  Google Scholar 

  32. Y. Shoji, T. Mizumoto, Sci. Technol. Adv. Mater. 15, 014602 (2014)

  33. J. Li, S.Y. Zhu, New J. Phys. 21, 085001 (2019)

  34. J. Li, S.Y. Zhu, G.S. Agarwal, Phys. Rev. Lett. 121, 203601 (2018)

  35. Z. Zhang, M.O. Scully, G.S. Agarwal, Phys. Rev. Res. 1, 023021 (2019)

  36. J. Li, S.Y. Zhu, G.S. Agarwal, Phys. Rev. A. 99, 021801(R) (2019)

    Article  ADS  Google Scholar 

  37. C. Kong, H. Xiong, Y. Wu, Phys. Rev. Appl. 12, 034001 (2019)

  38. Z.B. Yang, X.D. Liu, X.Y. Yin, Y. Ming, H.Y. Liu, R.C. Yang, Phys. Rev. Appl. 15, 024042 (2021)

  39. H.Y. Yuan, X.R. Wang, Appl. Phys. Lett. 110, 082403 (2017)

  40. H.Y. Yuan, S. Zhang, Z. Ficek, Q.Y. He, M.H. Yung, Phys. Rev. B 101, 014419 (2020)

  41. S.S. Zheng, F.X. Sun, H.Y. Yuan, Z. Ficek, Q.H. Gong, Q.Y. He, Sci. China-Phys. Mech. Astron. 64, 210311 (2020)

  42. H.Y. Yuan, P. Yan, S.S. Zheng, Q.Y. He, K. Xia, M.H. Yung, Phys. Rev. Lett. 124, 053602 (2020)

  43. Y.P. Wang, G.Q. Zhang, D. Zhang, X.Q. Luo, W. Xiong, S.P. Wang, T.F. Li, C.M. Hu, J.Q. You, Phys. Rev. B 94, 224410 (2016)

  44. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. Lett. 113, 083603 (2014)

  45. M. Harder and C. M. Hu, in Solid State PhysicsPhysics 69, edited by R. E. Camley and R. L. Stamp (Academic, Cambridge, 2018), pp. 47–121

  46. D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, Y. Nakamura, Appl. Phys. Express 12, 070101 (2019)

  47. S.V. Kusminskiy, H.X. Tang, F. Marquardt, Phys. Rev. A 94, 033821 (2016)

  48. E, Almpanis, Phys. Rev. B 97, 184406 (2018)

  49. E. Almpanis, G.P. Zouros, P.A. Pantazopoulos, K.L. Tsakmakidis, N. Papanikolaou, N. Stefanou, Phys. Rev. B 101, 054412 (2020)

  50. A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura, Phys. Rev. Lett. 116, 223601 (2016)

  51. X. Zhang, N. Zhu, C.L. Zou, H.X. Tang, Phys. Rev. Lett. 117, 123605 (2016)

  52. J.A. Haigh, A. Nunnenkamp, A.J. Ramsay, A.J. Ferguson, Phys. Rev. Lett. 117, 133602 (2016)

  53. S. Sharma, Y.M. Blanter, G.E.W. Bauer, Phys. Rev. Lett. 121, 087205 (2018)

  54. T.S. Parvini, V.A.S.V. Bittencourt, Phys. Rev. Res. 2, 022027(R) (2020)

    Article  Google Scholar 

  55. C. Caspers, V.P. Gandhi, A. Magrez, E. de Rijk, J.P. Ansermet, Appl. Phys. Lett. 108, 241109 (2016)

  56. L. Y. Shi, D. Wu, Z. X. Wang, T. Lin, C. M. Hu, and N. L. Wang, arXiv: 2004.05823v2

  57. T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Nat. Nanotechnol. 11, 231 (2016)

    Article  ADS  Google Scholar 

  58. C. Manohar, G. Venkataraman, Phys. Rev. B 5, 1993 (1972)

    Article  ADS  Google Scholar 

  59. S. M. Bose, E-Ni. Foo, and M. A. Zuniga, Phys. Rev. B 12, 3855 (1975)

  60. M. Goryachev, W.G. Farr, D.L. Creedon, Y. Fan, M. Kostylev, M.E. Tobar, Phys. Rev. Appl. 2, 054002 (2014)

  61. J-M. Le Floch, Y. Fan, M. Aubourg, D. Cros, N. C. Carvalho, Q. Shan, J. Bourhill, E. N. Ivanov, G. Humbert, V. Madrangeas, and M. E. Tobar, Rev. Sci. Instrum. 84, 125114 (2013)

  62. K. Fujisawa, I.R.E. Trans, Microwave Theory Tech. 6, 344 (1958)

    Article  Google Scholar 

  63. W.W. Hansen, J. Appl. Phys. 9, 654 (1938)

    Article  ADS  Google Scholar 

  64. C.W. Gardiner, P. Zoller, Quantum Noise (Springer, New York, 2004)

    MATH  Google Scholar 

  65. Y.P. Wang, J.W. Rao, Y. Yang, P.C. Xu, Y.S. Gui, B.M. Yao, J.Q. You, C.M. Hu, Phys. Rev. Lett. 123, 127202 (2019)

  66. X.W. Xu, L.N. Song, Q. Zheng, Z.H. Wang, Y. Li, Phys. Rev. A 98, 063845 (2018)

  67. M. Mergenthaler, J. Liu, J.J. Le Roy, N. Ares, A.L. Thompson, L. Bogani, F. Luis, S.J. Blundell, T. Lancaster, A. Ardavan, G.A.D. Briggs, P.J. Leek, E.A. Laird, Phys. Rev. Lett. 119, 147701 (2017)

  68. J.P. Kotthaus, V. Jaccarino, Phys. Rev. Lett. 28, 1649 (1972)

    Article  ADS  Google Scholar 

  69. E. Chappel, M.D. Nez-Regueiro, F. Dupont, G. Chouteau, C. Darie, A. Sulpice, Eur. Phys. J. B 17, 609 (2000)

    Article  ADS  Google Scholar 

  70. T. Moriyama, K. Hayashi, K. Yamada, M. Shima, Y. Ohya, T. Ono, Phys. Rev. Mater. 3, 051402(R) (2019)

    Article  ADS  Google Scholar 

  71. M. Goryachev, M.E. Tobar, New J. Phys. 17, 023003 (2015)

  72. O. Johansen, A. Brataas, Phys. Rev. Lett. 121, 087204 (2018)

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grants No. 62165014 and 12174055), and Fujian Natural Science Foundation (Grant No. 2021J01185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Can Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZB., Liu, HY. & Yang, RC. Asymmetric quantum synchronization generation in antiferromagnet-cavity systems. Eur. Phys. J. Plus 137, 878 (2022). https://doi.org/10.1140/epjp/s13360-022-03064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03064-0

Navigation