Skip to main content
Log in

Dicke superradiance, Bose-Einstein condensation of photons and spontaneous symmetry breaking

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It is shown that the phenomenon of Dicke superradiance essentially occurs due to spontaneous symmetry breaking. Two generalised versions of the Dicke model are studied, and compared with a model that describes photonic Bose-Einstein condensate, which was experimentally realised sometime back. In all the models, it is seen that the occurrence of spontaneous symmetry breaking is responsible for coherent radiation emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Here the fact that \(K = a^{\dag } a + S_{z}\) is conserved, that is \([H,K]=0\), is utilised.

  2. One can indeed show that the photon number states and the coherent states are orthogonal to each other. It follows from the fact that \(|\alpha \rangle = e^{\alpha a^{\dag } - \alpha ^{*} a} |0\rangle \), where \(|\alpha |^{2} \propto N\), which implies that \(\langle 0 | \alpha \rangle \rightarrow 0\) as \(N \rightarrow \infty \).

  3. Such a zero frequency mode actually corresponds to existence of a spatially constant electric field. Same conclusion albeit using a different argument was also reached in [26] and [15]

References

  1. L.E. Reichl, A modern course in statistical physics (Wiley, Hoboken, 1998)

    MATH  Google Scholar 

  2. E.A. Cornell, C.E. Wieman, Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  ADS  Google Scholar 

  3. M. Stone, The physics of quantum fields (Springer Verlag, New York, 2000)

    Book  Google Scholar 

  4. Hiroomi Umezawa, Advanced field theory: micro, macro, and thermal physics (American Institute of Physics, New York, 1993)

    Google Scholar 

  5. R.Y. Chiao, Bogoliubov dispersion relation for a ‘photon fluid’: Is this a superfluid? Opt. Comm. 179(1–6), 157–166 (2000)

    Article  ADS  Google Scholar 

  6. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Bose-Einstein condensation of photons in an optical microcavity. Nature 468(7323), 545–548 (2010)

    Article  ADS  Google Scholar 

  7. Robert H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99 (1954)

    Article  ADS  Google Scholar 

  8. Michel Gross, Serge Haroche, Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93(5), 301–396 (1982)

    Article  ADS  Google Scholar 

  9. Klaus Hepp, Elliott H. Lieb, On the superradiant phase transition for molecules in a quantized radiation field: The Dicke maser model. Ann. Phys. 76(2), 360–404 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yo. K. Wang, F.T. Hioe, Phase transition in the Dicke model of superradiance. Phys. Rev. A 7(3), 831 (1973)

    Article  ADS  Google Scholar 

  11. N. Skribanowitz, I.P. Herman, J.C. MacGillivray, M.S. Feld, Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30(8), 309 (1973)

    Article  ADS  Google Scholar 

  12. J.A. Mlynek, A.A. Abdumalikov, C. Eichler, A. Wallraff, Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat. commun. 5(1), 1–6 (2014)

    Article  Google Scholar 

  13. Daniel Bhatti, Joachim von Zanthier, Girish S. Agarwal, Superbunching and nonclassicality as new hallmarks of superradiance. Sci. Rep. 5(1), 1–8 (2015)

    Article  Google Scholar 

  14. S. Oppel, R. Wiegner, G.S. Agarwal, J. von Zanthier, Directional superradiant emission from statistically independent incoherent nonclassical and classical sources. Phys. Rev. Lett. 113(26), 263606 (2014)

    Article  ADS  Google Scholar 

  15. Anatolii V. Andreev, Vladimir I. Emel’yanov, Yu. A. Il’inskii, Collective spontaneous emission (Dicke superradiance). Soviet Phys. Uspekhi 23, 493–514 (1980)

    Article  ADS  Google Scholar 

  16. Wei-Feng. Zhuang, Bin Geng, Hong-Gang. Luo, Guang-Can. Guo, Ming Gong, Universality class and exact phase boundary in the superradiant phase transition. Phys. Rev. A 104, 053308 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ricardo Puebla, Myung-Joong. Hwang, Jorge Casanova, Martin B. Plenio, Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys. Rev. Lett. 118, 073001 (2017)

    Article  ADS  Google Scholar 

  18. Xunda Jiang, Lu. Bo, Chengyin Han, Ruihuan Fang, Minhua Zhao, Zhu Ma, Tian Guo, Chaohong Lee, Universal dynamics of the superradiant phase transition in the anisotropic quantum Rabi model. Phys. Rev. A 104, 043307 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Vacanti, S. Pugnetti, N. Didier, M. Paternostro, G.M. Palma, R. Fazio, V. Vedral, Photon production from the vacuum close to the superradiant transition: Linking the dynamical Casimir effect to the Kibble-Zurek mechanism. Phys. Rev. Lett. 108, 093603 (2012)

    Article  ADS  Google Scholar 

  20. Hiroomi Umezawa, Hiroshi Matsumoto, Masashi Tachiki, Thermo field dynamics and condensed states (North-Holland, Amsterdam, 1982)

    Google Scholar 

  21. Jeffrey Goldstone, Abdus Salam, Steven Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  22. Vivek M. Vyas, J. Banerji, Prasanta K. Panigrahi, On Berezinskii-Kosterlitz-Thouless phase transition and universal breathing mode in two dimensional photon gas. Phys. Lett. A 378, 20 (2013)

    Google Scholar 

  23. J.R. Klauder, E.C.G. Sudarshan, Fundamentals of quantum optics (Courier Corporation, 2006)

  24. G.S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  25. Ravinder R. Puri, Mathematical methods of quantum optics, vol. 79 (Springer, Germany, 2001)

    Book  Google Scholar 

  26. V.F. Elesin, Y.V. Kopaev. Contribution to the electron theory of ferroelectricity. JETP Lett, 24(2), (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek M. Vyas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, V.M., Panigrahi, P.K. & Srinivasan, V. Dicke superradiance, Bose-Einstein condensation of photons and spontaneous symmetry breaking. Eur. Phys. J. Plus 137, 815 (2022). https://doi.org/10.1140/epjp/s13360-022-03047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03047-1

Navigation