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Abstract In this paper we study the Casimir energy of a sample made by N cavities, with N >> 1, across the transition from the
metallic to the superconducting phase of the constituting plates. After having characterised the energy for the configuration in which
the layers constituting the cavities are made by dielectric and for the configuration in which the layers are made by plasma sheets, we
concentrate our analysis on the latter. It represents the final step towards the macroscopical characterisation of a “multi-cavity” (with
N large) necessary to fully understand the behaviour of the Casimir energy of a YBCO (or a GABCO) sample across the transition.
Our analysis is especially useful to the Archimedes experiment, aimed at measuring the interaction of the electromagnetic vacuum
energy with a gravitational field. To this purpose, we aim at modulating the Casimir energy of a layered structure, the multi-cavity,
by inducing a transition from the metallic to the superconducting phase. After having characterised the Casimir energy of such
a structure for both the metallic and the superconducting phase, we give an estimate of the modulation of the energy across the
transition.
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1 Introduction

The principal goal of the Archimedes experiment [1] is to measure the coupling of the vacuum fluctuations of Quantum Electro-
dynamics (QED) to the gravitational field of the Earth. The coupling is obtained, as usual in Quantum Field Theory in Curved
spacetime [2-5], assuming the Einstein tensor to be proportional to the expectation value of the regularized and renormalized
energy-momentum tensor of matter fields, in particular, for the Archimedes experiment, of the electromagnetic field. The idea is
to weigh the vacuum energy stored in a rigid Casimir cavity [6], made by parallel conducting plates, by modulating the reflectivity
of the plates upon inducing a transition from the metallic to the superconducting state [1]. The “modulation factor” is defined as
n= % were % is the difference of Casimir energy (per square meter) in the normal and in the superconducting state, and % is the

0
- . . . 2
(absolute value) of the Casimir energy (per square meter), at zero temperature, of an ideal cavity of the same thickness d: % = ;’20203 .

In Ref. [1] it was shown that, in order to measure such an effect, n must be of the order n ~ 1073 and that, to this purpose,
a multi-cavity, obtained by superimposing many cavities must be used. This structure is natural in the case of crystals of type-II
superconductors, particularly cuprates, being composed by Cu—O planes, that undergo the superconducting transition, separated by
nonconducting planes. A crucial aspect to be tested is the behavior of the Casimir energy [6] for a multi-cavity when the layers
undergo the phase transition from the metallic to the superconducting phase. In a previous paper [7] a careful study for such a type
of structure has been carried out for a sample made by up to three “relatively thick” (of the order of ten nanometer) dielectric layers.
In the present paper we extend the analysis to any number of cavities for both situations: layers consisting of “thick” dielectric slabs
and layers consisting of “thin” plasma sheets.

Indeed, in Ref. [8], considering a cavity based on a high-T.. layered superconductor, a factor as high as n = 4 x 10~* has been
estimated (for flat plasma sheets at zero temperature and no conduction in the normal state, so that A E corresponds to the energy
of the ideal cavity, and charge density n = 10'* cm™2). The Archimedes sensitivity is expected to be capable of assessing the
interaction of gravity and vacuum energy also for values lower than 7 = 4 x 10™*, up to 1/100 of this value [1]. It is then crucial to
understand the level of modulation achievable with layered superconducting structures. This is the scope of the present paper.

Considering in particular the multi-cavity, the general assumption adopted so far has been that the Casimir energy obtained by
overlapping many cavities is the sum of the energies of each individual cavity. This is true if the distances between neighboring
cavities are large (in the sense that the thickness of each metallic layer separating the various cavities is very large with respect to
the penetration depth of the radiation field). Of course, this is no longer true if the thickness of these metallic inter-cavity layers gets
thinner and thinner.

Section II studies the Casimir energy of a multilayered cavity, assuming either dielectric or plasma sheet matching conditions at
each interface between the layers. In Sec. III, numerical calculations are carried out and an analytic model capable of describing the
Casimir energy at finite temperature is given. Finally, in Sec. IV, a possible model for describing the variation (and the modulation)
of the Casimir energy across the transition is introduced. Our concluding remarks are found in Sec. V.
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Fig. 1 The layered structure
considered in this paper. For the
dielectric case all even-numbered
regions include a dielectric
material and all odd-numbered
regions include vacuum. For
plasma-sheet model the layers
marked by bold lines are simple
interfaces of zero thickness and d;
is the thickness of the i-th slab
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2 The Casimir energy of NV coupled cavities

In this section we deduce the Casimir Energy of n coupled cavities, even though in the present paper we are interested in applying
our results to plasma sheets, we will discuss the case of dielectrics first and then recover the plasma sheets results as a suitable
limiting case.

In the following, referring to Fig. 1, d; is the distance of the i-th cavity from the (i — 1)-th, (thickness of the i-th cavity), within
the slabs 1, 3, 5 and N there is vacuum while within the regions 0, 2, 4, 6 and N + 1 there is dielectric (in the case of dielectric
model) or vacuum (for the plasma-sheet model). The thickness of the regions O and N + 1 is assumed to be infinite.

The general expression for the Casimir energy (per unit area), at finite temperature, will be written in the usual manner [9-11]

2 ey

oo/
dk
E=kgTy / - [log ATE(&)) +1og A™ (5))]
1=0
where the A are the so called generating functions (in the following we will omit the subscript TM (T E) if no ambiguity is generated),
g = 2wlkgT are the Matsubara frequencies, kp is the Boltzmann constant, / = 0, 1, 2, . . ., and the superscript ' on the sum means
that the zero mode must be multiplied by a factor % The generating functions are obtained by computing the determinant of the
most general boundary conditions at each singular layer located at dy, dp + d1, do + d1 + d»...etc. (see Fig. 1; see also the appendix)
[12].
For the sake of clarity, we only give here the general argument about the procedure for obtaining the generating functions,
referring the reader to the appendix for the complete computation. In the appendix we show that the A functions can be written in
terms of a sort of generalised reflection coefficients:

€Ki — € (ie)Kj — 2%1@-19

R — ij K; — Kj +2Q
™ Ej(i{l)K,'—I—Ei(i{])Kj-i-Q,%Kin, TE Ki‘i‘Kj“rZQ7
Si,j _ Ej(lgl)Kl E,(l{'[)K/ +2§12 K; KJ Si’j _ K; — Kj —2Q
™o Ki + e (oK +2%K,-Kj’ BT K+ Kj+2Q°
Tivj B GJ(ICI)KZ +51(1§1)K1 2§12 KlK] Ti’j B K; + Kj —2Q

™ e oK + e (oK +2%K,-Kj’ BT K+ Kj+2Q

A /ki + € (i{[)ff, ki = (kx, ky), Q2= %ﬁ?q*z, 1o is the magnetic permeability of vacuum, n, p is the two dimensional
carrier density in the layer, and ¢* and m*, respectively, their charge and mass. The standard dielectric boundary conditions (dbc)
will be recovered by imposing 2 = 0 and the plasma sheet boundary conditions (psbc) by requiring €; (if;) = 1, Vi (in this case,
K; = Kj).

After introducing the auxiliary functions

where K;

Eiik
Fiik

=e 2K SIMRI 41,

— 2K RiJTIK 4RIk,
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Giik = =24iKjgikTij 4 §iri.
Hik — SiiRIk 4 o2 K i ik
and (henceforth, we will assume all the cavities to be equal and consider only the indices {ijk} = {012}), on defining:

I, =EY2. [, = 022K G012,
n—2
1, = FO12¢—2d2K> <H012672d2K2) G"2. forn > 3.
we can proceed to compute the generating functions.

2.1 The dielectric case

Let us consider Casimir cavities made of dielectric layers (of thickness d;). To obtain the general expression for the A functions we
can proceed inductively (a very detailed discussion up to three cavities can be found in Ref. [7]). For the cavity characterised by the
numbers (012) in Fig. 1, with €y = €5, the generating function, for TM and T E modes, respectively, is obtained in the usual manner
[7, 10] (see appendix). After regularization, i.e., setting to zero the Casimir energy when the two cavities are infinitely far away,
the result can be written as A; = E%? = I|. Let us now consider two cavities [(012), (234) in Fig. 1]. In this case, the generating
function is the determinant of the 8 x 8 matrix made by the first rows and columns of the matrix given in the appendix [7]. It can
be written as a 2 x 2 block matrix, thus [17, 18]

A= det(é g) = det(A) det(1 — A~'BD™1C) det(D),

where {A, B, C, D} are 4 x 4 matrices, with det(A) = det(D) = A;.

When the two cavities are infinitely far away from each other (d» — o0), C = 0, A = det(A)det(D) =: A; and the
Casimir energy will be simply the sum of the energies of the two cavities, log (A>) = log (A%) = 2log (A1). When they are
brought at a distance d» from each other, in addition to the previous energy, there is the interaction energy accounted for by the
term det(1 — A~ BD~1C). In this case A, = det(A) det(D) det(1 — A~ BD~1C) and, after regularization, it can be written (see
appendix) as Ay =: [ 12 + I, which defines /1 and /5, so that the corresponding Casimir energy depends on log A, = log (1 12 + ) =
log (1 12) +log(1+ L/I 12). The first term is simply the sum of the energies of the two cavities taken independently, the second term
is the interaction energy between the two [7]. Therefore we can always reduce ourselves to the computation of determinants of
products of 4 x 4 matrix. The interaction in the case of n > 3 cavities is accounted for by the term I,.

In this manner, using the inductive principle, it is not difficult to convince oneself that the generic Ay functions for the case of N
dielectric cavities can be obtained in the following manner (a sort of Feynman diagram for the generating functions): let us define
{ki, ko, ..., kj}tobe the J-th integer partition of N and Q its multiplicity (the number of combinations that contain the same type
of I; but in a different position) then

AN =Y 0yl It,).
J

So, for example,

Ay =1,

Ay = (1) + D,

As=) +hh+ LI+ 1 =) +20 L+ I,

Ay =14+ L1z + 131 + 122 +hLhhh+LLL+ DLl + 114

=L +2L1+ 13+ 3L + 1},
and, e.g.,
Ao =1+ 918 + 281013 + 351} 13 + 151715 + 15 + 81] I + 4217 b I3 + 6013 I3 15

+ 200 515 + ISIPIE 4+ 301 13 + 61313 + 411 13 + 7101y 4 301} I 1y + 3017 15 14
+ 4314 + 2013 31y 4 2411 L I3 1y + 31314 + 61212 + 3117 4 617 Is + 2015 I Is
+ 120113 s + 1213 315 + 612 I3 Is + 61y Iy ds + 12 + 51116 + 1217 I 1g + 315 I
+ 601131 + 21al + 41} I + 611 L 17 + 21317 + 317 Is + 212 Is + 211 Io + To,

for ten cavities.
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Table 1 The ratio ]5 gt/]]] asa

function of the number of cavities

=z
Z|—
s

O 0 1 AN R W N~
—_
(=3
N
[9%)
[\

— = ok ko,
O N W W o= O
_ = = = =
S o oo oo
D N NN NN
S O ® ® 3 3
EDN ® & » &

2.2 The plasma sheets case

These formulae can be extended to the case in which the layers are characterised as plasma sheets. For example, the two dielectric
cavities (012) and (234) can describe three plasma-sheet cavities, (012), (123), (234), by imposing €; = 1, and Q # 0. In other
words, two dielectric cavities needs four layers located at 0, dy, di + da, di + da + d3 but the same four layers correspond to
three cavities having plasma sheet as boundaries. Consequently N (odd) plasma sheets can be obtained by n = w standard
dielectrics by simply imposing €; (i¢) = 1, and the extension of the previous formulae to the case of an odd number of plasma sheets
is straightforward.

The case of an even number of plasma sheets is more involved. It can be obtained starting with N + 1 (N even) cavities and
moving the last layer to infinity. From the mathematical point of view, this procedure corresponds to introducing a term 7, (which
describes the interaction of the last interface with all the others), defined like as

I{=1; I= lim I,, if n>2; having defined G’ /% := §'/. 2)
G—>G'
In this manner, we have for two and four plasma sheet (please note that it is necessary to perform the limiting procedure first and
then to group together the various terms)

AV = lim AP = lim Ay = lim [(I)? + L] =01+ 15 =1 + I; 3
> = iy Ao = i e = Jin L] = Rl = @
AP = lim A} = lim Ay= lim [+ b+ L1 + I3]
G—>G' G—G' G—G'
=hLI{+ LW+ LI+ =1} +L+ L1+ 15 4)

The fact that only one term at a time takes the prime corresponds to the fact that the last cavity only must be sent to infinity (i.e.
dy — oo while leaving all the remaining d;, i # N finite).

3 Numerical results

We are now in the position to discuss the dependence of the Casimir Energy of a N-cavity made of N —plasma sheets. We underline
the fact that the contribution of TE modes results various order of magnitude less than the one from TM modes. For this reason, in
the following, it will be simply omitted.

We start by considering the variation of the Casimir energy as a function of the number of cavities for fixed thickness d; = 2
nm and © = 20720¢% — 49593.3 m" (sce Refs. [16, 19]). We get ZL1 = —0.000197 Jm~2 and, for the ratio £V, between the
Casimir Energy of N cavities E[N], and the product NE[1] between the number of cavities and the energy of a single cavity E[1],
we find the values quoted in the following Table 1.

The best fit is given by

1 E[N] 0.034

——— =1.034 — ——, 5
N E[1] N0.71 ( )

@ Springer
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Fig. 2 The exact numerical result E(N)
(dots) and the fitted results given

. E(1)N
by Eq. (5) (green line) of the M
function E[N]/(NE[1]) ford =2 1.030 ) . - .
nm e -
1.025 —
1.020 g
1.015
1.010
1.005
1.000 é
t n 1 1 1 N
5 10 15
Fig. 3 A comparison between E
exact numerical values of the A

Casimir energy (dots) and the
approximated formula, Eq. (7) r
(lines), with d expressed in nm ~0.0002
and E/A in J/m? '

-0.0004 |
-0.0006
-0.0008 |

-0.0010f

-0.0012f

that gives a clear indication of the presence of an asymptote for N — oo. In Fig. 2 a comparison between the exact numerical result
and the analytical fitted behaviour up to N = 19 [Eq. (5)] is shown.
Thus, we obtained an asymptotic expression for the Casimir energy for large N,

E[N]~ (1.034 E[1])N (6)

and deduced that the coupling of the various cavities resulted in an increase of the Casimir energy of 3.4%. This result is very
different from the result for dielectric layers, in which a strong coupling between the two and the three nearest cavities is found (see
[7]). Indeed, considering (for giving an idea) a cavity made by two dielectric slabs (for example made by Niobium) 2 nm thick and
separated by 2 nm of vacuum, we find % 2~ 30% to be compared with the 1.2% obtained for plasma-sheet.

Needless to say this result depends on the thickness of the cavity. For example in the same situation but with (more realistic)
thickness of the dielectric cavities (and of the vacuum) d = 50 nm, the same ratio turns out to be >~ 3%. The same behaviour is
found for the case of three cavities, see discussion in [7] sec. 5.

In order to have further confirmation of eq.(6), which is, after all, obtained at fixed €2 and d, we can use the Casimir energy

functional dependence of a single cavity on these two parameters as reported in [15]: E[1] = 5 x 10™3ke d%' With this in mind,

we assume for E[N]/A the following functional form E[N]/A = —(1.034 N)K hc%:, with arbitrary K, « and $, and find their
best estimate, using the method of least-squares, with respect to the exact results obtained numerically. We found K = 5.0 x 1073,
B = 2.4998 and o = 0.4998, in perfect agreement with Ref. [15]. The comparison, shown in Fig. 3 (Casimir energy as a function
of d) and Fig. 4 (Casimir energy as a function of 2), are a clear indication of the validity of the expression (6).

In conclusion, a good approximation for the Casimir Energy (at fixed temperature) for N plasma-sheet cavities can be written as

E[N] Ve _ VQo o
— = —(1.034 thds/2>N = (—1.63 x 10 28(Jm))(zvds/z(m 3)) (7

with E[N]/A measured in Jm~2.
Based on the above formulae, in the following section we give an estimate for the variation of the Casimir energy across the
metal-superconductor transition.
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Fig. 4 A comparison between E
exact values of the Casimir energy A
. R PN
(dots) and the approximated 000002 000004  0.00006 000008 000010
formula (lines), for d = 2 nm, -0.001 -
with © expressed in nm~! E/A in
J/m? -0.002 [
——N=10
-0.003
—N=19
-0.004
-0.005
-0.006 -
Fig. 5 Typical layered structure of e {0 — {
Y BayCuz 07 [22]
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~~~~~~~~~~~~~~~~ - Cu0,743
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4 The variation of the Casimir energy in the YBCO

The typical structure of a YBCO cell (a very well studied material for its numerous fundamental applications [20, 21]) is represented
in Fig. 5, in which § = 4.25A is the thickness of our plasma sheet and d = 3. 18A is the distance between the layers.

By observing that [16] (0) = 212‘5 o at T = 0 K, we can write for the Casimir energy of one cavity in the superconducting
state as “
E( ) 1
O _ 163 10728,/ — : ®)
A 2d5 1qp(0)

Using the BCS relation A(T) = ——29Q___ [22], ding to th f d- iring, as it is suitable fi tes, fi
sing the relation A(T) N A [22], corresponding to the case of d-wave pairing, as it is suitable for cuprates, for
T < T, and for one cavity we get

E(T 1. 10728 [ 5 8§ V1 —(T/TH*3
(1) __ 16310 Vo = 163 x 107 LAl (YK s

A dab(T) 2d3 Lab(0)
Thus, using for YBayCuzO7 [19], T. = 92 K, 1,5 (0) = 1415A,d = 3.36 A, and § = 5.84 A, we have

E(90
% =—9.51 x 1073,/1 — (90/92)4/3 = —0.001616 Jm™>. (10

For the normal phase, T > T, we will use the data (and formulae) of Ref. [23].

AtT = 100K, we have n3p = 3.1 x 102 m~3, which implies nyp = n3p 8 = (3.1 x 10°)(5.84 x 10710) = 1.810 x 100 m 2.
In the Archimedes experiment a transition of a few degrees around the critical temperature is required to induce a continuous
superconducting-normal transition. For this reason, in the following, we will choose, to fix the ideas, a four degree interval around

T,, thus for 7 = 94 K, we have npp = 1.317 x 101024 = 1,702 x 10'® m~2. Consequently, Q = %ﬁez =300.505 m™', and

100 —
E(94 Q
EOY _ —1.63 x 10728,/ == = —0.001365 Jm2.
A e

®

Thus,
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Fig. 6 The transition of the T T T T

sample of YBCO we are using 30

R (19)

60

88 90 92 94 96

AE _ E(94) — E(90)
AT A

= 0.000251 Jm~2.

As revealed by an inspection of the table in Ref. [19], it is clear that the previous results depend in a crucial way on the sample
of YBCO used. A typical Resistance vs. Temperature curve of the YBCO crystals we are planning to use in the Archimedes
experiment is reported in Fig. 6. Our reference values are 7, = 89 K and A,,(0) = 1030 A [24], thus, assuming all the other

arameters unaltered, we have EBD _ _0.002258 Jm~2 and, in the normal phase, T = 91 K, EOD _ _0.001343 Jm~2 so that
p A p A
AE — EODEED — 0,0009142 Jm~2.

5 Conclusions

We have proposed a model for computing the variation of the Casimir energy of a YBCO sample across the metal-superconductor
transition.

We have constructed a powerful procedure to compute the renormalised Casimir energy both in the case of cavities made of a
large number of thick dielectric layers and in the case of cavities made by a large number of thin plasma sheet layers.

Our main assumption is that the last case can be used to describe the Casimir energy in YBCO and, more generally in cuprates
(GdBCO), because of their natural built-in layered structure, both in the normal and in the superconducting phase. While the approach
used here rests on a marked microscopic layer structure of the superconductor, the model uses phenomenological macroscopic
parameters assuming which include mediated properties of the layer structure itself. The analysis conducted in [16] of the correlation
between Casimir energy and experimental parameters such as penetration length in the plane A4, effective mass m™ and critical
temperature 7 is rather reassuring. Indeed, after their phenomenological analysis, the authors explicitly state in the conclusions that
the plasma sheet model provides a good description for the behaviour of copper oxide HTSCs superconductors.

We suggested a possible way of characterising the variation of the Casimir energy at the metal-superconductor transition, giving
a numerical estimate for the specific YBCO sample that we are using in the Archimedes experiment (at this time both YBCO and
GdBCO superconductors are under consideration).

The computed value for the “modulation factor” n = %—E, for one cavity (since the total number of cavities within a sample will
depend on the ratio between its total thickness and the thickness of the single layer, it is better to use the modulation factor referred

to one cavity only), is thus in the range (% ~)0.0009 < AE—‘OE < 0.003 (~ %) (Ep/ A being the energy (per square meter)

of an ideal cavity 11.68 A thick) see Fig. 5, which is quite reassuring for the Archimedes experiment [1] . Of course, although
encouraging, these results must be considered as an estimate of the orders of magnitude involved that reinforces the hypothesis that
the variation of Casimir energy is not negligible compared to the condensation energy in a type II superconductor.
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Appendix A

The generating functions are obtained by imposing the most general boundary conditions at each singular layer located at dy, dp +
dy, do + d + d...etc. (see Fig. 1). These are obtained, as usual, by integrating the Maxwell equations

oB
VD:,O, VXE+§:O,

oD
V.B =0, VXH—W=J,

D=¢cE, B=uH, (e¢=¢y, uw= ugin vacuum),
across the discontinuity layers [12],

(Di—D;—1) n=0, (B;—B;—1)-n=0,
nx(E;—E;_1)=0, nx(H;-H;) =],

where n = Z is the normal to the layers (parallel to the z-axis, going from the i-th to the i + 1-th layer), o is the surface charge
density, and J is the surface current density respectively (in principle they could be different at each layer, but we will not consider
this situation). By virtue of the translational invariance in the (x, y) plane we can set

E = f‘(z)ei(kH~xH—wl‘)7 B = g(Z)ei(k”-x”—a)t).

In the following, when discussing the plasma sheet model, we will consider the so called hydrodynamic model [13, 14], in which a
continuous fluid with mass m* and charge ¢* is uniformly distributed in the layer with an overall-neutralizing background charge. The
fluid displacement £ is purely tangential, § = (&, &,) with surface charge and current densities related to the tangential component
of the electric field E by

*

£E= %EH =:qoE|. J=npq*E =100k, 0 =-npq*V -&E=—00V &,

nap being the two dimensional carrier density in the layer, and ¢* and m™* being their charge and mass, respectively. Under these
assumptions, the most general boundary conditions at the i = 1, 2, 3...-th boundaries are

o0q0 9f
Gi(w)f,-Z —€i71(w)f,‘z = T2 8; )
aft  off
/i - Jizi =0, for the TM modes, and (A1)
az 0z
4 z
dg; 98y —Qg,
0z 9z
g —gi_, =0, for the TE modes , (A2)

with Q = ppoogo. With these boundary conditions, the generating functions for the TM and T E modes, respectively, can be written
in terms of the auxiliary functions

€j (1)K — €5 Kj — 2%1(1‘1(]' v Ki—Kj 429

R’ = , =

™ €; (e Ki + € (0K +2 5 KiK; BT K +K;+2Q
1

g ej(i;z)Ki—e,-(i;z>K,-+2%K,~Kj L Ki— K20

™ _e,-(ig)Ki+ei(i¢,)Kj+2%Kin’ TE ™ K+ K; +29
1

GENVK + e eVK s — 22 KK
Tisj B E./(lgl)Kl +€1(1§I)K_/ 2{[2 KlKj i K; + Kj Yo
™ —

(i . (i . Qp .’ TTE_K. K +20
GJ(ICI)KI+ez(1§1)K,+2¥K1K, i+ K+

with K; = ,/kf_ + €; (i{[);'lz, and k; = (ky, ky). Standard dielectric boundary conditions (dbc) are recovered by imposing €2 = 0
and the plasma sheet boundary conditions (psbc) by requiring €;(i;) = 1, Vj (in this case K; = K;).

Elk = e 2diKjgIhRMT 4,
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Fiik — o=24;K;RiITIk 4 RIK,
Gk = ¢=24iKjgikisj 4 §ivJ
Hiik — QiiRik 4 o=2diKj i ik,
Considering henceforth all the cavities to be equal, we consider only the indices {ijk} = {012}, so that

I, = EY2. [, = pO12,-2K> G012

n—2
I, = F012672d21<2<H012672d21<2) G"2, forn > 3.

Let us consider, for the case of the TM modes, three cavities. Letting x; = pro d,, the matching conditions give rise to the 12 x 12

matrix of coefficients

M =
—e*0K0ey —e¥0K1¢)  0K1¢ 0 0 0 0 0 0 0 0
—e*0Kog, e~0K1 Kk, —e*0K1K 0 0 0 0 0 0 0 0
0 A1K1e e KIe  —e¥1K2ey —¥1K2¢, 0 0 0 0 0 0
0 SKIg —e 1Kk eMiK2g, —et1K2k, 0 0 0 0 0 0
0 0 0 e~ Kaaey  (K2¥aey, _oK3¥2ey _omK3¥2¢4 0 0 0 0
0 0 0 —e Kook, Kavag, —oK3vag; o~K3vag, 0 0 0 0
x 0 0 0 0 0 K3viey  oK3ie o Kavig, _oKavig, 0 0
0 0 0 0 0 K33 g, o K33 g, oKav3g, _oKavig, 0 0
0 0 0 0 0 0 0 e Karae, Kavae, _oKs¥aey _omKs¥aeg
0 0 0 0 0 0 0 —e Kaxag, oKaxag, —oKsvags o~Ksvags
0 0 0 0 0 0 0 0 0 eK5%5es e K5¥5¢q
0 0 0 0 0 0 0 0 0 eKs¥s ks —e Ks¥s ks

Computing the determinant of the minors of dimensions 4, 8, and 12, we obtain the energy of one, two, and three cavities,

After regularization, for the single cavity (012) in Fig. 1, we find
Al = E02 = 1.
For two cavities (012 — 234), we find
A, = EV2E24 | o—20daka) (0125234 _, (I)? + I, and
2 I
log Ay = log(Iy) +log| 1+ 7
1
Finally, for the three cavities, we find
As = E012E234E456 + e—2(dzk2+d4k4)F012H234G456

+ e—2d2k2 E456 FO]2G234 + e—2d4k4 E0]2F234G456

=0+ L+ LL+hD,

21 I I3
log Az =log(I?) +1log| 1 + +logl1+ ——"—
g 23 =log(I7) +log ? ' Ty

When dp — o0, I» — 0 and

log Ay = logll2 =2log;.

S O o oo o CoC oo

0
—e—Kexs €6
e7K6X5 K,

respectively.

(A3)

(A4)

(AS5)

(A6)

Thus, when the two cavities are far away, their energy is simply the sum of the individual contributions and 7 can be seen as the
energy due to the coupling of the two cavities (012)—(234). For the three cavities (012-234-456), the formulas are written so as to
make evident the contribution to the energy resulting from the sum of the energies of the single cavities, with respect to the one
coming from the coupling of the two possible pairs of cavities (012-234), (234-456), and the one coming from the coupling of the

three, I®.
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