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Abstract In this paper we study the Casimir energy of a sample made by N cavities, with N � 1, across the transition from the25

metallic to the superconducting phase of the constituting plates. After having characterised the energy for the configuration in which26

the layers constituting the cavities are made by dielectric and for the configuration in which the layers are made by plasma sheets, we27

concentrate our analysis on the latter. It represents the final step towards the macroscopical characterisation of a “multi-cavity” (with28

N large) necessary to fully understand the behaviour of the Casimir energy of a YBCO (or a GdBCO) sample across the transition.29

Our analysis is especially useful to the Archimedes experiment, aimed at measuring the interaction of the electromagnetic vacuum30

energy with a gravitational field. To this purpose, we aim at modulating the Casimir energy of a layered structure, the multi-cavity,31

by inducing a transition from the metallic to the superconducting phase. After having characterised the Casimir energy of such32

a structure for both the metallic and the superconducting phase, we give an estimate of the modulation of the energy across the33

transition.34

a e-mail: annalisa.allocca@na.infn.it
b e-mail: saverio.avino@ino.cnr.it
c e-mail: sergiobale2@gmail.com
d e-mail: enrico.calloni@na.infn.it
e e-mail: sergio.caprara@roma1.infn.it
f e-mail: mcarpinelli@uniss.it
g e-mail: ldonofrio@na.infn.it
h e-mail: ddurso@uniss.it
i e-mail: rosario.derosa@na.infn.it
j e-mail: luciano.errico@na.infn.it
k e-mail: gianluca.gagliardi@ino.it
l e-mail: marco.grilli@roma1.infn.it
m e-mail: valentina.mangano@roma1.infn.it
n e-mail: maria.marsella@roma1.infn.it
o e-mail: luca.naticchioni@roma1.infn.it

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-022-03025-7&domain=pdf
http://orcid.org/0000-0002-5595-5037
mailto:annalisa.allocca@na.infn.it
mailto:saverio.avino@ino.cnr.it
mailto:sergiobale2@gmail.com
mailto:enrico.calloni@na.infn.it
mailto:sergio.caprara@roma1.infn.it
mailto:mcarpinelli@uniss.it
mailto:ldonofrio@na.infn.it
mailto:ddurso@uniss.it
mailto:rosario.derosa@na.infn.it
mailto:luciano.errico@na.infn.it
mailto:gianluca.gagliardi@ino.it
mailto:marco.grilli@roma1.infn.it
mailto:valentina.mangano@roma1.infn.it
mailto:maria.marsella@roma1.infn.it
mailto:luca.naticchioni@roma1.infn.it


  826 Page 2 of 11 Eur. Phys. J. Plus         (2022) 137:826 

1 Introduction35

The principal goal of the Archimedes experiment [1] is to measure the coupling of the vacuum fluctuations of Quantum Electro-36

dynamics (QED) to the gravitational field of the Earth. The coupling is obtained, as usual in Quantum Field Theory in Curved37

spacetime [2–5], assuming the Einstein tensor to be proportional to the expectation value of the regularized and renormalized38

energy-momentum tensor of matter fields, in particular, for the Archimedes experiment, of the electromagnetic field. The idea is39

to weigh the vacuum energy stored in a rigid Casimir cavity [6], made by parallel conducting plates, by modulating the reflectivity40

of the plates upon inducing a transition from the metallic to the superconducting state [1]. The “modulation factor” is defined as41

η = �E
E0

were �E
A is the difference of Casimir energy (per square meter) in the normal and in the superconducting state, and E0

A is the42

(absolute value) of the Casimir energy (per square meter), at zero temperature, of an ideal cavity of the same thickness d: E0
A = π2

�c
720d3 .43

In Ref. [1] it was shown that, in order to measure such an effect, η must be of the order η ∼ 10−5 and that, to this purpose,44

a multi-cavity, obtained by superimposing many cavities must be used. This structure is natural in the case of crystals of type-II45

superconductors, particularly cuprates, being composed by Cu–O planes, that undergo the superconducting transition, separated by46

nonconducting planes. A crucial aspect to be tested is the behavior of the Casimir energy [6] for a multi-cavity when the layers47

undergo the phase transition from the metallic to the superconducting phase. In a previous paper [7] a careful study for such a type48

of structure has been carried out for a sample made by up to three “relatively thick” (of the order of ten nanometer) dielectric layers.49

In the present paper we extend the analysis to any number of cavities for both situations: layers consisting of “thick” dielectric slabs50

and layers consisting of “thin” plasma sheets.51

Indeed, in Ref. [8], considering a cavity based on a high-Tc layered superconductor, a factor as high as η = 4 × 10−4 has been52

estimated (for flat plasma sheets at zero temperature and no conduction in the normal state, so that �E corresponds to the energy53

of the ideal cavity, and charge density n = 1014 cm−2). The Archimedes sensitivity is expected to be capable of assessing the54

interaction of gravity and vacuum energy also for values lower than η = 4 × 10−4, up to 1/100 of this value [1]. It is then crucial to55

understand the level of modulation achievable with layered superconducting structures. This is the scope of the present paper.56

Considering in particular the multi-cavity, the general assumption adopted so far has been that the Casimir energy obtained by57

overlapping many cavities is the sum of the energies of each individual cavity. This is true if the distances between neighboring58

cavities are large (in the sense that the thickness of each metallic layer separating the various cavities is very large with respect to59

the penetration depth of the radiation field). Of course, this is no longer true if the thickness of these metallic inter-cavity layers gets60

thinner and thinner.61

Section II studies the Casimir energy of a multilayered cavity, assuming either dielectric or plasma sheet matching conditions at62

each interface between the layers. In Sec. III, numerical calculations are carried out and an analytic model capable of describing the63

Casimir energy at finite temperature is given. Finally, in Sec. IV, a possible model for describing the variation (and the modulation)64

of the Casimir energy across the transition is introduced. Our concluding remarks are found in Sec. V.65

p e-mail: antonio.pasqualetti@ego-gw.it
q e-mail: gpepe@na.infn.it
r e-mail: maurizio.perciballi@roma1.infn.it
s e-mail: lpesenti@uniss.it
t e-mail: paola.puppo@roma1.infn.it
u e-mail: piero.rapagnani@roma1.infn.it
v e-mail: fulvio.ricci@roma1.infn.it
w e-mail: luigi.rosa@na.infn.it (corresponding author)
x e-mail: rovelli.carlo@gmail.com
y e-mail: davide.rozza@lns.infn.it
z e-mail: paolo.ruggi@ego-gw.it
aa e-mail: Naurang.Saini@roma1.infn.it
ab e-mail: valeria.sequino@na.infn.it
ac e-mail: vsipala@uniss.it
ad e-mail: daniela.stornaiuolo@unina.it
ae e-mail: francesco.tafuri@na.infn.it
af e-mail: arturo.tagliacozzo@na.infn.it
ag e-mail: itostaemelo@uniss.it
ah e-mail: lucia.trozzo@na.infn.it

123

mailto:antonio.pasqualetti@ego-gw.it
mailto:gpepe@na.infn.it
mailto:maurizio.perciballi@roma1.infn.it
mailto:lpesenti@uniss.it
mailto:paola.puppo@roma1.infn.it
mailto:piero.rapagnani@roma1.infn.it
mailto:fulvio.ricci@roma1.infn.it
mailto:luigi.rosa@na.infn.it
mailto:rovelli.carlo@gmail.com
mailto:davide.rozza@lns.infn.it
mailto:paolo.ruggi@ego-gw.it
mailto:Naurang.Saini@roma1.infn.it
mailto:valeria.sequino@na.infn.it
mailto:vsipala@uniss.it
mailto:daniela.stornaiuolo@unina.it
mailto:francesco.tafuri@na.infn.it
mailto:arturo.tagliacozzo@na.infn.it
mailto:itostaemelo@uniss.it
mailto:lucia.trozzo@na.infn.it


Eur. Phys. J. Plus         (2022) 137:826 Page 3 of 11   826 

Fig. 1 The layered structure
considered in this paper. For the
dielectric case all even-numbered
regions include a dielectric
material and all odd-numbered
regions include vacuum. For
plasma-sheet model the layers
marked by bold lines are simple
interfaces of zero thickness and di
is the thickness of the i-th slab

2 The Casimir energy of N coupled cavities66

In this section we deduce the Casimir Energy of n coupled cavities, even though in the present paper we are interested in applying67

our results to plasma sheets, we will discuss the case of dielectrics first and then recover the plasma sheets results as a suitable68

limiting case.69

In the following, referring to Fig. 1, di is the distance of the i-th cavity from the (i − 1)-th, (thickness of the i-th cavity), within70

the slabs 1, 3, 5 and N there is vacuum while within the regions 0, 2, 4, 6 and N + 1 there is dielectric (in the case of dielectric71

model) or vacuum (for the plasma-sheet model). The thickness of the regions 0 and N + 1 is assumed to be infinite.72

The general expression for the Casimir energy (per unit area), at finite temperature, will be written in the usual manner [9–11]73

E = kB T
∞ ′∑

l=0

∫
dk⊥
(2π)2

[
log �TE(ζl) + log �TM(ζl)

]
(1)7475

where the � are the so called generating functions (in the following we will omit the subscript TM(T E) if no ambiguity is generated),76

ζl = 2πlkBT are the Matsubara frequencies, kB is the Boltzmann constant, l = 0, 1, 2, . . ., and the superscript ′ on the sum means77

that the zero mode must be multiplied by a factor 1
2 . The generating functions are obtained by computing the determinant of the78

most general boundary conditions at each singular layer located at d0, d0 + d1, d0 + d1 + d2...etc. (see Fig. 1; see also the appendix)79

[12].80

For the sake of clarity, we only give here the general argument about the procedure for obtaining the generating functions,81

referring the reader to the appendix for the complete computation. In the appendix we show that the � functions can be written in82

terms of a sort of generalised reflection coefficients:83

Ri, j
TM =

ε j (iζl)Ki − εi (iζl)K j − 2 �

ζ 2
l
Ki K j

ε j (iζl)Ki + εi (iζl)K j + 2 �

ζ 2
l
Ki K j

, Ri, j
TE = Ki − K j + 2�

Ki + K j + 2�
,84

Si, jTM =
ε j (iζl)Ki − εi (iζl)K j + 2 �

ζ 2
l
Ki K j

ε j (iζl)Ki + εi (iζl)K j + 2 �

ζ 2
l
Ki K j

, Si, jTE = Ki − K j − 2�

Ki + K j + 2�
,85

T i, j
TM =

ε j (iζl)Ki + εi (iζl)K j − 2 �

ζ 2
l
Ki K j

ε j (iζl)Ki + εi (iζl)K j + 2 �

ζ 2
l
Ki K j

, T i, j
TE = Ki + K j − 2�

Ki + K j + 2�
,8687

where Ki =
√
k2⊥ + εi (iζl)ζ 2

l , k⊥ = (kx , ky), � = μ0n2Dq∗2

m∗ , μ0 is the magnetic permeability of vacuum, n2D is the two dimensional88

carrier density in the layer, and q∗ and m∗, respectively, their charge and mass. The standard dielectric boundary conditions (dbc)89

will be recovered by imposing � = 0 and the plasma sheet boundary conditions (psbc) by requiring εi (iζl) = 1, ∀i (in this case,90

Ki = K j ).91

After introducing the auxiliary functions92

Ei jk = e−2d j K j S j,kRi, j + 1,93

Fi jk = e−2d j K j Ri, jT j,k + R j,k,94

123
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Gi jk = e−2d j K j S j,kTi, j + Si, j ,95

Hi jk = Si, jR j,k + e−2d j K j Ti, jT j,k
9697

and (henceforth, we will assume all the cavities to be equal and consider only the indices {i jk} = {012}), on defining:98

I1 = E012; I2 = F012e−2d2K2G012,99

In = F012e−2d2K2
(
H012e−2d2K2

)n−2
G012, for n ≥ 3,100101

we can proceed to compute the generating functions.102

2.1 The dielectric case103

Let us consider Casimir cavities made of dielectric layers (of thickness di ). To obtain the general expression for the � functions we104

can proceed inductively (a very detailed discussion up to three cavities can be found in Ref. [7]). For the cavity characterised by the105

numbers (012) in Fig. 1, with ε0 = ε2, the generating function, for TM and TE modes, respectively, is obtained in the usual manner106

[7, 10] (see appendix). After regularization, i.e., setting to zero the Casimir energy when the two cavities are infinitely far away,107

the result can be written as �1 = E012 = I1. Let us now consider two cavities [(012), (234) in Fig. 1]. In this case, the generating108

function is the determinant of the 8 × 8 matrix made by the first rows and columns of the matrix given in the appendix [7]. It can109

be written as a 2 × 2 block matrix, thus [17, 18]110

� = det

(
A B
C D

)
= det(A) det(1 − A−1BD−1C) det(D),111112

where {A, B,C, D} are 4 × 4 matrices, with det(A) = det(D) = �1.113

When the two cavities are infinitely far away from each other (d2 → ∞), C = 0, � = det(A) det(D) =: �2 and the114

Casimir energy will be simply the sum of the energies of the two cavities, log (�2) = log (�2
1) = 2 log (�1). When they are115

brought at a distance d2 from each other, in addition to the previous energy, there is the interaction energy accounted for by the116

term det(1 − A−1BD−1C). In this case �2 = det(A) det(D) det(1 − A−1BD−1C) and, after regularization, it can be written (see117

appendix) as �2 =: I 2
1 + I2, which defines I1 and I2, so that the corresponding Casimir energy depends on log �2 = log (I 2

1 + I2) =118

log (I 2
1 ) + log (1 + I2/I 2

1 ). The first term is simply the sum of the energies of the two cavities taken independently, the second term119

is the interaction energy between the two [7]. Therefore we can always reduce ourselves to the computation of determinants of120

products of 4 × 4 matrix. The interaction in the case of n ≥ 3 cavities is accounted for by the term In .121

In this manner, using the inductive principle, it is not difficult to convince oneself that the generic �N functions for the case of N122

dielectric cavities can be obtained in the following manner (a sort of Feynman diagram for the generating functions): let us define123

{k1, k2, . . . , kJ } to be the J-th integer partition of N and QJ its multiplicity (the number of combinations that contain the same type124

of Ik but in a different position) then125

�N =
∑

J

QJ
(
Ik1 Ik2 . . . IkJ

)
.126127

So, for example,128

�1 = I1,129

�2 = (I1)
2 + I2,130

�3 = (I1)
3 + I1 I2 + I2 I1 + I3 = (I1)

3 + 2I1 I2 + I3,131

�4 = I4 + I1 I3 + I3 I1 + I 2
2 + I1 I1 I2 + I1 I2 I1 + I2 I1 I1 + I 4

1132

= I4 + 2I1 I3 + I 2
2 + 3I 2

1 I2 + I 4
1 ,133134

and, e.g.,135

�10 = I 10
1 + 9I 8

1 I2 + 28I 6
1 I

2
2 + 35I 4

1 I
3
2 + 15I 2

1 I
4
2 + I 5

2 + 8I 7
1 I3 + 42I 5

1 I2 I3 + 60I 3
1 I

2
2 I3136

+ 20I1 I
3
2 I3 + 15I 4

1 I
2
3 + 30I 2

1 I2 I
2
3 + 6I 2

2 I
2
3 + 4I1 I

3
3 + 7I 6

1 I4 + 30I 4
1 I2 I4 + 30I 2

1 I
2
2 I4137

+ 4I 3
2 I4 + 20I 3

1 I3 I4 + 24I1 I2 I3 I4 + 3I 2
3 I4 + 6I 2

1 I
2
4 + 3I2 I

2
4 + 6I 5

1 I5 + 20I 3
1 I2 I5138

+ 12I1 I
2
2 I5 + 12I 2

1 I3 I5 + 6I2 I3 I5 + 6I1 I4 I5 + I 2
5 + 5I 4

1 I6 + 12I 2
1 I2 I6 + 3I 2

2 I6139

+ 6I1 I3 I6 + 2I4 I6 + 4I 3
1 I7 + 6I1 I2 I7 + 2I3 I7 + 3I 2

1 I8 + 2I2 I8 + 2I1 I9 + I10,140141

for ten cavities.142

123
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Table 1 The ratio E[N ]
NE[1] as a

function of the number of cavities
N 1

N
E[N ]
E[1]

1 1.0000

2 1.0125

3 1.0181

4 1.0212

5 1.0232

6 1.0246

7 1.0256

8 1.0263

9 1.0269

10 1.0274

11 1.0278

13 1.0284

15 1.0288

17 1.0292

19 1.0294

2.2 The plasma sheets case143

These formulae can be extended to the case in which the layers are characterised as plasma sheets. For example, the two dielectric144

cavities (012) and (234) can describe three plasma-sheet cavities, (012), (123), (234), by imposing εi = 1, and � �= 0. In other145

words, two dielectric cavities needs four layers located at 0, d1, d1 + d2, d1 + d2 + d3 but the same four layers correspond to146

three cavities having plasma sheet as boundaries. Consequently Nps (odd) plasma sheets can be obtained by n = Nps+1
2 standard147

dielectrics by simply imposing εi (iζ ) = 1, and the extension of the previous formulae to the case of an odd number of plasma sheets148

is straightforward.149

The case of an even number of plasma sheets is more involved. It can be obtained starting with Nps + 1 (Nps even) cavities and150

moving the last layer to infinity. From the mathematical point of view, this procedure corresponds to introducing a term I ′
n (which151

describes the interaction of the last interface with all the others), defined like as152

I ′
1 = 1; I ′

n = lim
G→G ′ In, if n ≥ 2; having defined G ′ i jk := Si j . (2)153154

In this manner, we have for two and four plasma sheet (please note that it is necessary to perform the limiting procedure first and155

then to group together the various terms)156

�
ps
2 = lim

G→G ′ �
ps
2+1 = lim

G→G ′ �2 = lim
G→G ′

[
(I1)

2 + I2
] = I1 I

′
1 + I ′

2 = I1 + I ′
2; (3)157158

�
ps
4 = lim

G→G ′ �
ps
4+1 = lim

G→G ′ �3 = lim
G→G ′

[
(I1)

3 + I1 I2 + I2 I1 + I3
]

159

= I1 I1 I
′
1 + I1 I

′
2 + I2 I

′
1 + I ′

3 = I 2
1 + I2 + I1 I

′
2 + I ′

3. (4)160161

The fact that only one term at a time takes the prime corresponds to the fact that the last cavity only must be sent to infinity (i.e.162

dN → ∞ while leaving all the remaining di , i �= N finite).163

3 Numerical results164

We are now in the position to discuss the dependence of the Casimir Energy of a N-cavity made of N−plasma sheets. We underline165

the fact that the contribution of TE modes results various order of magnitude less than the one from TM modes. For this reason, in166

the following, it will be simply omitted.167

We start by considering the variation of the Casimir energy as a function of the number of cavities for fixed thickness di = 2168

nm and � = μ0n2Dq∗2

m∗ = 49593.3 m−1 (see Refs. [16, 19]). We get E[1]
A = −0.000197 Jm−2 and, for the ratio E[N ]

NE[1] between the169

Casimir Energy of N cavities E[N], and the product NE[1] between the number of cavities and the energy of a single cavity E[1],170

we find the values quoted in the following Table 1.171

The best fit is given by172

1

N

E[N ]
E[1] = 1.034 − 0.034

N 0.71 , (5)173174

123
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Fig. 2 The exact numerical result
(dots) and the fitted results given
by Eq. (5) (green line) of the
function E[N]/(NE[1]) for d = 2
nm

Fig. 3 A comparison between
exact numerical values of the
Casimir energy (dots) and the
approximated formula, Eq. (7)
(lines), with d expressed in nm
and E/A in J/m2

that gives a clear indication of the presence of an asymptote for N → ∞. In Fig. 2 a comparison between the exact numerical result175

and the analytical fitted behaviour up to N = 19 [Eq. (5)] is shown.176

Thus, we obtained an asymptotic expression for the Casimir energy for large N ,177

E[N ] � (1.034 E[1])N (6)178179

and deduced that the coupling of the various cavities resulted in an increase of the Casimir energy of 3.4%. This result is very180

different from the result for dielectric layers, in which a strong coupling between the two and the three nearest cavities is found (see181

[7]). Indeed, considering (for giving an idea) a cavity made by two dielectric slabs (for example made by Niobium) 2 nm thick and182

separated by 2 nm of vacuum, we find E[2]−2E[1]
E[2] � 30% to be compared with the 1.2% obtained for plasma-sheet.183

Needless to say this result depends on the thickness of the cavity. For example in the same situation but with (more realistic)184

thickness of the dielectric cavities (and of the vacuum) d = 50 nm, the same ratio turns out to be � 3%. The same behaviour is185

found for the case of three cavities, see discussion in [7] sec. 5.186

In order to have further confirmation of eq.(6), which is, after all, obtained at fixed � and d, we can use the Casimir energy187

functional dependence of a single cavity on these two parameters as reported in [15]: E[1] = 5 × 10−3
�c

√
�

d5 . With this in mind,188

we assume for E[N]/A the following functional form E[N ]/A = −(1.034 N )K�c�α

dβ , with arbitrary K , α and β, and find their189

best estimate, using the method of least-squares, with respect to the exact results obtained numerically. We found K = 5.0 × 10−3,190

β = 2.4998 and α = 0.4998, in perfect agreement with Ref. [15]. The comparison, shown in Fig. 3 (Casimir energy as a function191

of d) and Fig. 4 (Casimir energy as a function of �), are a clear indication of the validity of the expression (6).192

In conclusion, a good approximation for the Casimir Energy (at fixed temperature) for N plasma-sheet cavities can be written as193

E[N ]
A

= −
(

1.034 K�c

√
�

d5/2

)
N = (−1.63 × 10−28(Jm)

)
(
N

√
�

d5/2
(m−3)

)
(7)194195

with E[N]/A measured in Jm−2.196

Based on the above formulae, in the following section we give an estimate for the variation of the Casimir energy across the197

metal-superconductor transition.198

123
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Fig. 4 A comparison between
exact values of the Casimir energy
(dots) and the approximated
formula (lines), for d = 2 nm,
with � expressed in nm−1 E/A in
J/m2

Fig. 5 Typical layered structure of
Y Ba2Cu3O7 [22]

4 The variation of the Casimir energy in the YBCO199

The typical structure of a YBCO cell (a very well studied material for its numerous fundamental applications [20, 21]) is represented200

in Fig. 5, in which δ = 4.25Å is the thickness of our plasma sheet and d = 3.18Å is the distance between the layers.201

By observing that [16] �(0) = δ

2λ2
ab(0)

, at T = 0 K, we can write for the Casimir energy of one cavity in the superconducting202

state as203

E(0)

A
= −1.63 × 10−28

√
δ

2d5

1

λab(0)
. (8)204205

Using the BCS relation λ(T ) = λ(0)√
1−(T/Tc)4/3

[22], corresponding to the case of d-wave pairing, as it is suitable for cuprates, for206

T < Tc and for one cavity we get207

E(T )

A
= − 1.63 × 10−28

λab(T )

√
δ

2d5
= −1.63 × 10−28

√
δ

2d5

√
1 − (T/Tc)4/3

λab(0)
(9)208209

Thus, using for YBa2Cu3O7 [19], Tc = 92 K, λab(0) = 1415 Å, d = 3.36 Å, and δ = 5.84 Å, we have210

E(90)

A
= − 9.51 × 10−3

√
1 − (90/92)4/3 = −0.001616 Jm−2. (10)211212

For the normal phase, T > Tc, we will use the data (and formulae) of Ref. [23].213

At T = 100 K, we have n3D = 3.1×1025 m−3, which implies n2D = n3D δ = (3.1×1025)(5.84×10−10) = 1.810×1016 m−2.214

In the Archimedes experiment a transition of a few degrees around the critical temperature is required to induce a continuous215

superconducting-normal transition. For this reason, in the following, we will choose, to fix the ideas, a four degree interval around216

Tc, thus for T = 94 K, we have n2D = 1.317 × 1016 94
100 = 1.702 × 1016 m−2. Consequently, � = μ0n2De2

2m∗ = 300.505 m−1, and217

E(94)

A
= −1.63 × 10−28

√
�

d5
= −0.001365 Jm−2.218219

Thus,220
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Fig. 6 The transition of the
sample of YBCO we are using

�E

A
= E(94) − E(90)

A
= 0.000251 Jm−2.221222

As revealed by an inspection of the table in Ref. [19], it is clear that the previous results depend in a crucial way on the sample223

of YBCO used. A typical Resistance vs. Temperature curve of the YBCO crystals we are planning to use in the Archimedes224

experiment is reported in Fig. 6. Our reference values are Tc = 89 K and λab(0) = 1030 Å [24], thus, assuming all the other225

parameters unaltered, we have E(87)
A = −0.002258 Jm−2 and, in the normal phase, T = 91 K, E(91)

A = −0.001343 Jm−2 so that226

�E
A = E(91)−E(87)

A = 0.0009142 Jm−2.227

5 Conclusions228

We have proposed a model for computing the variation of the Casimir energy of a YBCO sample across the metal-superconductor229

transition.230

We have constructed a powerful procedure to compute the renormalised Casimir energy both in the case of cavities made of a231

large number of thick dielectric layers and in the case of cavities made by a large number of thin plasma sheet layers.232

Our main assumption is that the last case can be used to describe the Casimir energy in YBCO and, more generally in cuprates233

(GdBCO), because of their natural built-in layered structure, both in the normal and in the superconducting phase. While the approach234

used here rests on a marked microscopic layer structure of the superconductor, the model uses phenomenological macroscopic235

parameters assuming which include mediated properties of the layer structure itself. The analysis conducted in [16] of the correlation236

between Casimir energy and experimental parameters such as penetration length in the plane λab, effective mass m∗ and critical237

temperature Tc is rather reassuring. Indeed, after their phenomenological analysis, the authors explicitly state in the conclusions that238

the plasma sheet model provides a good description for the behaviour of copper oxide HTSCs superconductors.239

We suggested a possible way of characterising the variation of the Casimir energy at the metal-superconductor transition, giving240

a numerical estimate for the specific YBCO sample that we are using in the Archimedes experiment (at this time both YBCO and241

GdBCO superconductors are under consideration).242

The computed value for the “modulation factor” η = �E
E0

, for one cavity (since the total number of cavities within a sample will243

depend on the ratio between its total thickness and the thickness of the single layer, it is better to use the modulation factor referred244

to one cavity only), is thus in the range
(

0.00025
0.27 ∼

)
0.0009 ≤ �E

E0
≤ 0.003

(∼ 0.0009
0.27

)
(E0/A being the energy (per square meter)245

of an ideal cavity 11.68 Å thick) see Fig. 5, which is quite reassuring for the Archimedes experiment [1] . Of course, although246

encouraging, these results must be considered as an estimate of the orders of magnitude involved that reinforces the hypothesis that247

the variation of Casimir energy is not negligible compared to the condensation energy in a type II superconductor.248
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Appendix A259

The generating functions are obtained by imposing the most general boundary conditions at each singular layer located at d0, d0 +260

d1, d0 + d1 + d2...etc. (see Fig. 1). These are obtained, as usual, by integrating the Maxwell equations261

∇ · D = ρ, ∇ × E + ∂B
∂t

= 0,262

∇ · B = 0, ∇ × H − ∂D
∂t

= J,263

D = εE, B = μH, (ε = ε0, μ = μ0 in vacuum),264265

across the discontinuity layers [12],266

(Di − Di−1) · n = σ, (Bi − Bi−1) · n = 0,267

n × (Ei − Ei−1) = 0, n × (H i − H i−1) = J,268269

where n = ẑ is the normal to the layers (parallel to the z-axis, going from the i-th to the i + 1-th layer), σ is the surface charge270

density, and J is the surface current density respectively (in principle they could be different at each layer, but we will not consider271

this situation). By virtue of the translational invariance in the (x, y) plane we can set272

E = f (z)ei(k||·x||−ωt), B = g(z)ei(k||·x||−ωt).273274

In the following, when discussing the plasma sheet model, we will consider the so called hydrodynamic model [13, 14], in which a275

continuous fluid with massm∗ and charge q∗ is uniformly distributed in the layer with an overall-neutralizing background charge. The276

fluid displacement ξ is purely tangential, ξ ≡ (ξx , ξy) with surface charge and current densities related to the tangential component277

of the electric field E‖ by278

ξ̈ = q∗

m∗E‖ =: q0E‖, J = n2D q∗ξ̇ =: σ0ξ̇ , σ = −n2D q∗∇‖ · ξ = −σ0∇‖ · ξ ,279280

n2D being the two dimensional carrier density in the layer, and q∗ and m∗ being their charge and mass, respectively. Under these281

assumptions, the most general boundary conditions at the i = 1, 2, 3...-th boundaries are282

εi (ω) f zi − εi−1(ω) f zi = −σ0q0

ω2

∂ f zi
∂z

,283

∂ f zi
∂z

− ∂ f zi−1

∂z
= 0, for the TM modes, and (A1)284285

∂gzi
∂z

− ∂gzi−1

∂z
=� gzi ,286

gzi − gzi−1 = 0, for the TE modes , (A2)287288

with � = μ0σ0q0. With these boundary conditions, the generating functions for the TM and TE modes, respectively, can be written289

in terms of the auxiliary functions290

Ri, j
TM =

ε j (iζl)Ki − εi (iζl)K j − 2 �

ζ 2
l
Ki K j

ε j (iζl)Ki + εi (iζl)K j + 2 �

ζ 2
l
Ki K j

, Ri, j
TE = Ki − K j + 2�

Ki + K j + 2�
291

Si, jTM =
ε j (iζl)Ki − εi (iζl)K j + 2 �

ζ 2
l
Ki K j

ε j (iζl)Ki + εi (iζl)K j + 2 �

ζ 2
l
Ki K j

, Si, jTE = Ki − K j − 2�

Ki + K j + 2�
292

T i, j
TM =

ε j (iζl)Ki + εi (iζl)K j − 2 �

ζ 2
l
Ki K j

ε j (iζl)Ki + εi (iζl)K j + 2 �

ζ 2
l
Ki K j

, T i, j
TE = Ki + K j − 2�

Ki + K j + 2�
293294

with Ki =
√
k2⊥ + εi (iζl)ζ 2

l , and k⊥ = (kx , ky). Standard dielectric boundary conditions (dbc) are recovered by imposing � = 0295

and the plasma sheet boundary conditions (psbc) by requiring ε j (iζl) = 1, ∀ j (in this case Ki = K j ).296

Ei jk = e−2d j K j S j,kRi, j + 1,297
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Fi jk = e−2d j K j Ri, jT j,k + R j,k,298

Gi jk = e−2d j K j S j,kTi, j + Si, j ,299

Hi jk = Si, jR j,k + e−2d j K j Ti, jT j,k .300301

Considering henceforth all the cavities to be equal, we consider only the indices {i jk} = {012}, so that302

I1 = E012; I2 = F012e−2d2K2G012,303

In = F012e−2d2K2
(
H012e−2d2K2

)n−2
G012, for n ≥ 3.304305

Let us consider, for the case of the TM modes, three cavities. Letting xi = ∑i
n=0 dn , the matching conditions give rise to the 12×12306

matrix of coefficients307

M =308

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ex0K0 ε0 −e−x0K1 ε1 ex0K1 ε1 0 0 0 0 0 0 0 0 0
−e−x0K0 K0 e−x0K1 K1 −ex0K1 K1 0 0 0 0 0 0 0 0 0

0 ex1K1 ε1 e−x1K1 ε1 −e−x1K2 ε2 −ex1K2 ε2 0 0 0 0 0 0 0
0 ex1K1 K1 −e−x1K1 K1 e−x1K2 K2 −ex1K2 K2 0 0 0 0 0 0 0
0 0 0 e−K2x2 ε2 eK2x2 ε2 −eK3x2 ε3 −e−K3x2 ε3 0 0 0 0 0
0 0 0 −e−K2x2 K2 eK2x2 K2 −eK3x2 K3 e−K3x2 K3 0 0 0 0 0
0 0 0 0 0 eK3x3 ε3 e−K3x3 ε3 −e−K4x3 ε4 −eK4x3 ε4 0 0 0
0 0 0 0 0 eK3x3 K3 −e−K3x3 K3 e−K4x3 K4 −eK4x3 K4 0 0 0
0 0 0 0 0 0 0 e−K4x4 ε4 eK4x4 ε4 −eK5x4 ε5 −e−K5x4 ε5 0
0 0 0 0 0 0 0 −e−K4x4 K4 eK4x4 K4 −eK5x4 K5 e−K5x4 K5 0
0 0 0 0 0 0 0 0 0 eK5x5 ε5 e−K5x5 ε5 −e−K6x5 ε6
0 0 0 0 0 0 0 0 0 eK5x5 K5 −e−K5x5 K5 e−K6x5 K6,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

309310

Computing the determinant of the minors of dimensions 4, 8, and 12, we obtain the energy of one, two, and three cavities, respectively.311

After regularization, for the single cavity (012) in Fig. 1, we find312

�1 = E012 = I1. (A3)313314

For two cavities (012 − 234), we find315

�2 = E012E234 + e−2(d2k2)F012G234 =: (I1)
2 + I2, and316

log �2 = log(I 2
1 ) + log

(
1 + I2

I 2
1

)
. (A4)317318

Finally, for the three cavities, we find319

�3 = E012E234E456 + e−2(d2k2+d4k4)F012H234G456
320

+ e−2d2k2 E456F012G234 + e−2d4k4 E012F234G456
321

=: I 3
1 + I3 + I1 I2 + I1 I2, (A5)322323

log �3 = log
(
I 3
1

) + log

(
1 + 2I1 I2

I 3
1

)
+ log

(
1 + I3

I 3
1 + 2I1 I2

)
. (A6)324325

When d2 → ∞, I2 → 0 and326

log �2 = log I 2
1 = 2 log I1.327328

Thus, when the two cavities are far away, their energy is simply the sum of the individual contributions and I (2) can be seen as the329

energy due to the coupling of the two cavities (012)–(234). For the three cavities (012–234–456), the formulas are written so as to330

make evident the contribution to the energy resulting from the sum of the energies of the single cavities, with respect to the one331

coming from the coupling of the two possible pairs of cavities (012–234), (234–456), and the one coming from the coupling of the332

three, I (3).333
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