Skip to main content
Log in

Analytic simulation of MHD boundary layer flow of a chemically reacting upper-convected Maxwell fluid past a vertical surface subjected to double stratifications with variable properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The study of thermal stratification has a broad scope of applications in solar engineering owing to its ability to predict the cases of achieving superior energy efficiency. This present communication focuses on the flow of a free convective MHD upper-convected Maxwell fluid in concert temperature-dependent viscosity, thermal conductivity across a stratified surface with nth order of chemical reaction. The governing partial differential equations are transformed into nonlinear ordinary differential equations by introducing relevant similarity variables and approximate analytical solution is determined operating the homotopy analysis method. Influence of different relevant parameters such as Deborah number, stratification, chemical reaction and variable thermophysical parameters on temperature, velocity and concentration distributions is shown to highlight the specifics of heat and mass transfer flow characteristics. It is followed that for the cases of \(n=1\) and \(n=2\), the concentration of species reduces for increasing chemical reaction parameter. It is also noticed that, the values of \(-f''(0)\) decrease while \(-\theta '(0)\) and \(-\phi (0)\) increase with increasing Deborah number \(\beta\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.C. Maxwell, On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1867). https://doi.org/10.1098/rstl.1867.0004

    Article  ADS  Google Scholar 

  2. M.S. Asmadi, R.M. Kasmani, Z. Siri, S. Sivasankaran, Upper-convected Maxwell fluid analysis over a horizontal wedge using Catteneo–Christov heat flux model. Therm. Sci. 25(2A), 1013–1021 (2021)

    Article  Google Scholar 

  3. H. Dessie, Effects of chemical reaction, activation energy and thermal energy on magnetohydrodynamcis maxwell fluid flow in rotating frame. J. Nanofluids 10, 67–74 (2021). https://doi.org/10.1002/htj.22013

    Article  Google Scholar 

  4. A.S. Idowu, J.O. Olabode, Thermochemistry and viscous heat dissipative effects on unsteady upper-convected Maxwell fluid flow past a stretching vertical plate with thermophysical variables. Heat Transf. 50, 2950–2974 (2020)

    Article  Google Scholar 

  5. K.S. Adegbie, A.J. Omowaye, A.B. Disu, I.L. Animasaun, Heat and mass transfer of upper convected Maxwell fluid flow with variable thermo-physical properties over a horizontal melting surface. Appl. Math. 6, 1362–1379 (2015)

    Article  Google Scholar 

  6. A.M. Salem, M.A. El-Aziz, Effect of Hall currents and chemical reaction on hydromagnetic flow of a stretching vertical surface with internal heat generation/absorption. Appl. Math. Model. 32, 1236 (2008)

    Article  MathSciNet  Google Scholar 

  7. N.A. Shah, T. Oreyeni, R. Shah, B. Salah, J.D. Chung, Brownian motion and thermophoretic diffusion effects on the dynamics of MHD upper convected Maxwell nanofluid flow past a vertical surface. Phys. Scr. 96, 125722 (2021). https://doi.org/10.1088/1402-4896/ac36ea

    Article  ADS  Google Scholar 

  8. K.K. Asogwa, S.M. Bilal, I.L. Animasaun, F.M. Mebarek-Oudina, Insight into the significance of ramped wall temperature and ramped surface concentration: the case of Casson fluid flow on an inclided Riga plate with heat absorption and chemical reaction. Nonlinear Eng. 10, 213–230 (2021)

    Article  ADS  Google Scholar 

  9. Z. Ali, A. Zeeshan, M.M. Bhatti, A. Hobiny, T. Saeed, Insight into the dynamics of Oldroyd-B Fluid over an upper surface of a paraboloid of revolution subject to chemical reaction dependent on first-order activation energy. Arab. J. Sci. Eng. 46, 6039–6048 (2021)

    Article  Google Scholar 

  10. B.R. Sharma, N. Dutta, Influence of chemical reaction and thermal radiation effects on mhd boundary layer flow over a moving vertical porous plate. Int. Res. J. Eng. Technol. 02(07), 180–187 (2015)

    Google Scholar 

  11. M.K. Gogoi, Effects of chemical reaction on mhd boundary layer flow over an exponentially stretching sheet with joule heating and thermal radiation. Int. Res. J. Eng. Technol. 02(09), 768–773 (2015)

    Google Scholar 

  12. S.Y. Ibrahim, O.D. Makinde, Chemically reacting mhd boundary layer flow of heat and mass transfer past a low-heat-resistant sheet moving vertically downwards. Sci. Res. Essays 6(22), 4762–4775 (2011)

    Google Scholar 

  13. A.W. Ogunsola, P.O. Olanrewaju, F.I. Alao, R. Osinowo, O.J. Fenuga, Effects of thermal diffusion and diffusion thermo on mhd combined convection and mass transfer past a vertical porous plate embedded in a porous medium with heat generation, thermal radiation, \(n^{th}\) order chemical reaction and viscous dissipation. J. Sci. Eng. Res. 1(1), 1–19 (2014)

    Google Scholar 

  14. M. Ferdows, Q.M. Al-Mdallal, Effects of order of chemical reaction on a boundary layer flow with heat and mass transfer over a linearly stretching sheet. Am. J. Flu. Dyn. 2(6), 89–94 (2012)

    Article  Google Scholar 

  15. P.R. Sharma, G. Singh, Effects of variable thermal conductivity and heat source/sink on mhd flow near a stagnation point on a linearly stretching sheet. J. Appl. Fluid Mech. 2(1), 12–21 (2009)

    Google Scholar 

  16. K.V. Prasad, K. Vajravelu, P.S. Datti, The effects of variable fluid properties on the Hydromagnetic on the hydromagnetic flow and heat transfer over a non-linearly stretching sheet. Int. J. Therm. Sci. 49, 603–610 (2010)

    Article  Google Scholar 

  17. O.K. Koriko, T. Oreyeni, A.J. Omowaye, I.L. Animasaun, Homotopy analysis of MHD free convective micropolar fluid flow along a vertical surface embedded in non-Darcian thermally-stratified medium. Open J. Fluid Dyn. 6, 198–221 (2016). https://doi.org/10.4236/ojfd.2016.63016

    Article  ADS  Google Scholar 

  18. T. Oreyeni, E. Omokhuale, Optimal homotopy analysis of MHd natural convection flow of thixotropic fluid under subjection of thermal stratification: boundary layer analysis. Am. J. Comput. Math. 9, 116–131 (2019). https://doi.org/10.4236/ajcm.2019.92009

    Article  Google Scholar 

  19. T. Hayat, T. Hussain, S.A. Shehzad, A. Alsaedi, Thermal and Concentration Stratifications effects in radiative flow of Jeffery fluid over a stretching sheet. PLoS ONE 9(10), e107858 (2014). https://doi.org/10.1371/journal.pone.0107858

    Article  ADS  Google Scholar 

  20. D. Srinivasacharya, O. Surender, Non-Darcy mixed convection in a doubly stratified porous medium with Soret–Dufour effects. Int. J. Eng. Math. 126218, 1–9 (2014). https://doi.org/10.1155/2014/126218

    Article  MATH  Google Scholar 

  21. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987)

    Google Scholar 

  22. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, London, 1987)

    Google Scholar 

  23. J. Charraudeau, Influence de gradents de properties physiques en convection force application au cas du tube. Int. J. Heat Mass Transf. 18, 87–95 (1975). https://doi.org/10.1016/0017-9310(75)90011-3

    Article  MATH  Google Scholar 

  24. S.J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method (Chapman /Hall, CRC Press, Boca Ration, 2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Fayz-Al-Asad or Mehmet Yavuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayz-Al-Asad, M., Oreyeni, T., Yavuz, M. et al. Analytic simulation of MHD boundary layer flow of a chemically reacting upper-convected Maxwell fluid past a vertical surface subjected to double stratifications with variable properties. Eur. Phys. J. Plus 137, 813 (2022). https://doi.org/10.1140/epjp/s13360-022-03014-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03014-w

Navigation