Skip to main content

Advertisement

Log in

A low-perveance electron gun for a high-efficiency Ka-band klystron

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Self-consistent analytic and numeric design for a set of electron guns with a high beams quality to be used in high-power Ka-band klystrons is presented in this paper. The set of electron guns can be used in the high-power Ka-band klystrons in order to feed linear accelerating structures at 36 GHz with an estimated 20 MW input power by achieving an effective accelerating electric field in the (100–150) MV/m range. In the framework of the Compact Light XLS project, a short Ka-band linearizer by working at 36 GHz able to provide an integrated voltage of at least 15 MV is proposed for bunch-phase linearization. In order to optimize the Ka-band klystrons efficiency for achieving 20 MW RF output power, different electron guns, beam focusing channel designs and the RF beam dynamics are examined and discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. http://www.compactlight.eu/Main/HomePage.

  2. CST studio suite . www.cst.com (2018)

  3. M. Behtouei et al., A Ka-band linearizer TW accelerating structure for the compact Light XLS project. J. Phys. Conf. Ser. 1596(1), 012021 (2020)

    Article  Google Scholar 

  4. M. Behtouei et al., A SW Ka-band linearizer structure with minimum surface electric field for the compact light XLS project. Nucl. Inst. Methods Phys. Res. A 984, 164653 (2020)

    Article  Google Scholar 

  5. M. Behtouei et al., Initial design of a high-power Ka-band Klystron. J. Phys. Conf. Ser. 1596(1), 012023 (2020)

    Article  Google Scholar 

  6. M. Behtouei et al., The Ka-band high power klystron amplifier design program of INFN. Vacuum 191, 110377 (2021)

    Article  ADS  Google Scholar 

  7. B. Spataro et al., NIM A 1013, 165643 (2021)

    Article  Google Scholar 

  8. S.V. Kutsaev, et al., Phys. Rev. Appl. (2019)

  9. A.J. Durand, A.M. Shroff. High voltage breakdown in the electron gun of linear microwave tubes. In: High Voltage Vacuum Insulation, (Academic Press,1995), pp. 403-429

  10. I. Langmuir, The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 2(6), 450 (1913)

    Article  ADS  Google Scholar 

  11. K. B. Blodgett, Currents limited by space charge between concentric spheres. In: Thermionic Phenomena. Pergamon, 125-135 (1961)

  12. J.R. Pierce, Rectilinear electron flow in beams. J. Appl. Phys. 11(8), 548–554 (1940)

    Article  ADS  Google Scholar 

  13. J. Haimson, Some aspects of electron beam optics and X-ray production with the linear accelerator. IRE Trans. Nucl. Sci. 9(2), 32–49 (1962)

    Article  Google Scholar 

  14. F. L. Shang, L. Shang, J. Li. The measurement system of the electron gun with double-anode structure. In: 7th Int. Particle Accelerator Conf. (IPAC16), Busan, Korea, May 8–13, (JACOW, Switzerland, Geneva, 2016), p. 2016

  15. Y.H. Chin, Design and performance of L-band and S-band multi beam klystrons. In: Proceedings of LINAC08, Victoria, BC, Canada 363 (2008)

  16. Y.V. Baryshev et al., A 100 MW electron source with extremely high beam area compression. Nucl. Instrum. Methods Phys. Res. A 340, 241–258 (1994)

    Article  ADS  Google Scholar 

  17. V.P. Yakovlev, O.A. Nezhevenko. Limitations on area compression of beams from pierce guns. In: AIP Conference Proceedings. American Institute of Physics , 474(1) (1999)

  18. G. Caryotakis, High power klystrons: theory and practice at the Stanford linear accelerator center. Stanf. Linear Accel. Cent. SLAC-PUB 10620, 139 (2004)

    Google Scholar 

  19. M. Behtouei et al., Relativistic versus nonrelativistic approaches to a low perveance high quality matched beam for a high efficiency Ka-band Klystron. Instruments 5(4), 33 (2021)

    Article  Google Scholar 

  20. C. K. Birdsall, Brillouin Flow Electron Gun. U.S. Patent No. 2,817,035. 17 Dec. (1957)

  21. J. Hirshfield, Advanced Accelerator Test Facility-Final Report for the Period 9/1/2010-8/31/2013. No. DOE-YALE-ER41504. (Yale Univ., New Haven, CT United States, 2014)

  22. J. Cai, I. Igor Syratchev, KlyC: 1.5-D large-signal simulation code for Klystrons. IEEE Trans. Plasma Sci. 47(4), 1734–1741 (2019)

    Article  ADS  Google Scholar 

  23. F. Marrese, L. Valletti, S. Fantauzzi, A. Leggieri, M. Behtouei, B. Spataro, F. Di Paolo, Multiphysics design of high-power microwave vacuum window. J. Microw. Optoelectron. Electromagn. Appl. 21, 157–170 (2022)

    Article  Google Scholar 

  24. O.A. Ivanov et al., Active microwave pulse compressor using an electron-beam triggered switch. Phys. Rev. Lett. 110(11), 115002 (2013)

    Article  ADS  Google Scholar 

  25. O.A. Ivanov et al., Active quasioptical Ka-band RF pulse compressor switched by a diffraction grating. Phys. Rev. Spec. Top. Accel. Beams 12(9), 093501 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Augusto Marcelli for his useful discussion and helpful advice. This work was partially supported by the Compact Light XLS Project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 777431.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Spataro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spataro, B., Behtouei, M., Di Paolo, F. et al. A low-perveance electron gun for a high-efficiency Ka-band klystron. Eur. Phys. J. Plus 137, 769 (2022). https://doi.org/10.1140/epjp/s13360-022-02987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02987-y

Navigation