Skip to main content
Log in

Numerical technique for simulation of melting within air ventilation system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present offered system for producing cold air within the building has various tubes filled with paraffin. Existence of paraffin makes it possible to save the energy to use at night. To assimilate more heat during the day, nanoparticles of graphene have been mixed with CaCl2·6H2O. Different geometries for system generated with changing pitch ratio (PR* = 4, 8) and volume of paraffin are the same for all geometries. In each geometry, influences of air Re (4500, 7500) and Tin (310.15 K and 315.15 K) as well as fraction of graphene (ϕ = 0, 0.03) have been analyzed via finite volume approach. Validation procedure indicated the right selection of numerical model and various values of Δt and size of mesh have been tested. With augment of PR*, the number of tube reduces with greater size; thus, the period augments around 6.59% and 9.29% when Re = 4500 and 7500. As graphene nanoparticles increases, the melting time decreases around 3.01%. Augmenting Re leads to higher speed of phase changing around 32.78%. The most effective factor on melting process is Tin which provides 36.56%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.M. Chu, D. Yadav, A. Shafee, Z. Li, Q.V. Bach, Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liq. 319, 114121 (2020). https://doi.org/10.1016/j.molliq.2020.114121

    Article  Google Scholar 

  2. X. Liu, Y.P. Xu, H. Ayed, Y.A. Rothan, M.M. Selim, Modeling for solidification of paraffin equipped with nanoparticles utilizing fins. J. Energy Storage 45, 103763 (2022). https://doi.org/10.1016/j.est.2021.103763

    Article  Google Scholar 

  3. Y. Qin, Simulation based on Galerkin method for solidification of water through energy storage enclosure. J. Energy Storage 50, 104672 (2022). https://doi.org/10.1016/j.est.2022.104672

    Article  Google Scholar 

  4. Y.-M. Chu, B.M. Shankaralingappa, B.J. Gireesha, F. Alzahrani, M. Ijaz Khan, S.U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 419, 126883 (2022). https://doi.org/10.1016/j.amc.2021.126883

    Article  MathSciNet  MATH  Google Scholar 

  5. Y.M. Chu, R. Moradi, A.M. Abazari, Q.V. Bach, Effect of non-uniform magnetic field on thermal performance of nanofluid flow in angled junction. Int. J. Modern Phys. C (2020). https://doi.org/10.1142/S0129183121500017

    Article  Google Scholar 

  6. X.-D. Luan, Xu. Yi-Peng, H. Ayed, M.M. Selim, Heat transfer treatment of nanomaterial with considering turbulator effects. Int. Commun. Heat Mass Transf. 131, 105787 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105787

    Article  Google Scholar 

  7. T.-H. Zhao, M. Ijaz Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7310

    Article  Google Scholar 

  8. Y.M. Chu, M.R. Hajizadeh, Z. Li, Q.V. Bach, Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 318, 114321 (2020). https://doi.org/10.1016/j.molliq.2020.114321

    Article  Google Scholar 

  9. T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted H"{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 21(3), 413–426 (2021). https://doi.org/10.1007/s40315-020-00352-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Y.M. Chu, N.H. Abu-Hamdeh, B. Ben-Beya, M.R. Hajizadeh, Z. Li, Q.V. Bach, Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liq. 320, 114457 (2020). https://doi.org/10.1016/j.molliq.2020.114457

    Article  Google Scholar 

  11. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 15(2), 701–724 (2021). https://doi.org/10.7153/jmi-2021-15-50

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Li, A. Almarashi, M. Jafaryar, M.R. Hajizadeh, Y.M. Chu, Melting process of nanoparticle enhanced PCM through storage cylinder incorporating fins. Powder Technol. 381, 551–560 (2021)

    Article  Google Scholar 

  13. P. Valipour, F.S. Aski, M. Mirparizi, Influence of magnetic field on CNT-Polyethylene nanofluid flow over a permeable cylinder. J. Mol. Liq. 225, 592–597 (2017)

    Article  Google Scholar 

  14. M. Sheikholeslami, Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Sol. Energy Mater. Sol. Cells (2022). https://doi.org/10.1016/j.solmat.2022.111786

    Article  Google Scholar 

  15. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. Real Acad. Cienc Exactas Físicas Nat. Ser. A Mat. RACSAM 115(2), 13–46 (2021). https://doi.org/10.1007/s13398-020-00992-3

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Wang, A. Almarashi, Y.A. Al-Turki, N.H. Abu-Hamdeh, M.R. Hajizadeh, Y.M. Chu, Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.115052

    Article  Google Scholar 

  17. H. Babazadeh, T. Muhammad, F. Shakeriaski, M. Ramzan, M.R. Hajizadeh, Nanomaterial between two plates which are squeezed with impose magnetic force. J. Therm. Anal. Calorim. 1–7 (2020).

  18. M. Sheikholeslami, S.A. Farshad, Nanoparticles transportation with turbulent regime through a solar collector with helical tapes. Adv. Powder Technol. 33(3), 103510 (2022)

    Article  Google Scholar 

  19. T.-H. Zhao, B.-C. Zhou, M.-K. Wang, Y.-M. Chu, On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 12–42 (2019). https://doi.org/10.1186/s13660-019-1991-0

    Article  MathSciNet  MATH  Google Scholar 

  20. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A.M. Abusorrah, A. Issakhov, N.H. Abu-Hamdeh, A. Shafee, Y.-M. Chu, Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.115591

    Article  Google Scholar 

  21. T.D. Manh, F. Salehi, A. Shafee, N.D. Nam, F. Shakeriaski, H. Babazadeh et al., Role of magnetic force on the transportation of nanopowders including radiation. J. Therm. Anal. Calorim. 1–8 (2019)

  22. T.-H. Zhao, M.-K. Wang, W. Zhang, Y.-M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 15 (2018). https://doi.org/10.1186/s13660-018-1848-y

    Article  MathSciNet  MATH  Google Scholar 

  23. Y.-M. Chu, R. Kumar, Q.-V. Bach, Water-based nanofluid flow with various shapes of Al2O3 nanoparticles owing to MHD inside a permeable tank with heat transfer. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01609-2

    Article  Google Scholar 

  24. M. Sheikholeslami, Z. Said, M. Jafaryar, Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid. Renew. Energy 188, 922–932 (2022). https://doi.org/10.1016/j.renene.2022.02.086

    Article  Google Scholar 

  25. Y.-M. Chu, T.-H. Zhao, Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 19(2), 589–595 (2016). https://doi.org/10.7153/mia-19-43

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Wang, Y.P. Xu, R. Qahiti, M. Jafaryar, M.A. Alazwari, N.H. Abu-Hamdeh, A. Issakhov, M.M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Pet. Sci. Eng. 208, 109734 (2022)

    Article  Google Scholar 

  27. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A. Issakhov, Y.-M. Chu, Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116096

    Article  Google Scholar 

  28. Y. Qin, Complex turbulator within an absorber tube of solar system with considering hybrid nanomaterial. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2053236

    Article  Google Scholar 

  29. Y.-M. Chu, U. Nazir, M. Sohail, M.M. Selim, J.-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3), 17 (2021). https://doi.org/10.3390/fractalfract5030119

    Article  Google Scholar 

  30. Y.-M. Chu, Z. Li, Q.-V. Bach, Application of nanomaterial for thermal unit including tube fitted with turbulator. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01587-5

    Article  Google Scholar 

  31. M. Sheikholeslami, Z. Ebrahimpour, Thermal improvement of linear fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape. Int. J. Therm. Sci. 176, 107505 (2022). https://doi.org/10.1016/j.ijthermalsci.2022.107505

    Article  Google Scholar 

  32. Y. Qin, Numerical modeling of energy storage unit during freezing of paraffin utilizing Al2O3 nanoparticles and Y-shape fin. J. Energy Storage 44, 103452 (2021). https://doi.org/10.1016/j.est.2021.103452

    Article  Google Scholar 

  33. S. Narges Hajiseyedazizi, M.E. Samei, J. Alzabut, Y.-M. Chu, On multi-step methods for singular fractional $q$-integro-differential equations. Open Math. 19(1), 1378–1405 (2021). https://doi.org/10.1515/math-2021-0093

    Article  MathSciNet  Google Scholar 

  34. Y.-M. Chu, F. Salehi, M. Jafaryar, Q.-V. Bach, Simulation based on FVM for influence of nanoparticles on flow inside a pipe enhanced with helical tapes. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01583-9

    Article  Google Scholar 

  35. Y. Qin, Nanofluid heat transfer within a pipe equipped with external device. Int. Commun. Heat Mass Transf. 127, 105487 (2021)

    Article  Google Scholar 

  36. F. Jin, Z.S. Qian, Y.M. Chu, M. UrRahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 12(2), 790–806 (2022). https://doi.org/10.11948/20210357

    Article  MathSciNet  Google Scholar 

  37. Y.-M. Chu, R. Moradi, Computational investigation of non-uniform magnetic field on thermal characteristic of nanofluid stream inside 180 degree elbow pipe. Mod. Phys. Lett. B (2020). https://doi.org/10.1142/S0217984921501578

    Article  Google Scholar 

  38. Y. Qin, Effect of inclusion of nanoparticles on unsteady heat transfer. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01960-y

    Article  Google Scholar 

  39. Y.-M. Chu, S. Bashir, M. Ramzan, M.Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8234

    Article  Google Scholar 

  40. T.-H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M.O. Alassafi, F.E. Alsaadi, Y.-M. Chu, A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 20(1), 160–176 (2021)

    MathSciNet  MATH  Google Scholar 

  41. M. Fang, G. Chen, Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl. Therm. Eng. 27, 994–1000 (2007)

    Article  Google Scholar 

  42. T. Silva, R. Vicente, C. Amaral, A. Figueiredo, Thermal performance of a window shutter containing PCM: numerical validation and experimental analysis. Appl Energy 179, 64–84 (2016)

    Article  Google Scholar 

  43. P. Dolado, A. Lazaro, J.M. Marin, B. Zalba, Characterization of melting and solidification in a real-scale PCM-air heat exchanger: experimental results and empirical model. Renew. Energy 36, 2906–2917 (2011)

    Article  Google Scholar 

  44. P. Dolado, A. Lazaro, J.M. Marin, B. Zalba, Characterization of melting and solidification in a real scale PCM-air heat exchanger: numerical model andexperimental validation. Energy Convers. Manag. 52, 1890–1907 (2011)

    Article  Google Scholar 

  45. R. Barzin, J.J.J. Chen, B.R. Young, M.M. Farid, Application of PCM energy storage in combination with night ventilation for space cooling. Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2015.08.088

    Article  Google Scholar 

  46. G. Zhou, Y. Yang, H. Xu, Energy performance of a hybrid space-cooling system in an office building using SSPCM thermal storage and night ventilation. Sol. Energy 85(3), 477–485 (2011)

    Article  ADS  Google Scholar 

  47. J. Borderon, J. Virgone, R. Cantin, Modeling and simulation of a phase change material system for improving summer comfort in domestic residence. Appl. Energy 140, 288–296 (2015)

    Article  Google Scholar 

  48. G. Zhou, Y. Yang, X. Wang, S. Zhou, Numerical analysis of effect of shapestabilized phase change material plates in a building combined with night ventilation. Appl. Energy 86(1), 52–59 (2009)

    Article  Google Scholar 

  49. F. Rouault, D. Bruneau, P. Sebastian, J. Lopez, Numerical modeling of tube bundle thermal energy storage for free-cooling of buildings. Appl. Energy 111, 1099–1106 (2013)

    Article  Google Scholar 

  50. Y.M. Chu, Z. Salahshoor, M.S. Shahraki, A. Shafee, Q.V. Bach, Annulus shape tank with convective flow in a porous zone with impose of MHD. Int. J. Mod. Phys. C (2020). https://doi.org/10.1142/S0129183120501685

    Article  MathSciNet  Google Scholar 

  51. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, On the bounds of the perimeter of an ellipse. Acta Math. Sci. 42B(2), 491–501 (2022). https://doi.org/10.1007/s10473-022-0204-y

    Article  MathSciNet  Google Scholar 

  52. M. Sheikholeslami, Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles. J. Energy Storage. 52(Part B), 104954 (2022). https://doi.org/10.1016/j.est.2022.104954

    Article  Google Scholar 

  53. T.-H. Zhao, M.-K. Wang, G.-J. Hai, Y.-M. Chu, Landen inequalities for Gaussian hypergeometric function. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. Mat. 116(1), 23 (2022). https://doi.org/10.1007/s13398-021-01197-y

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Nazeer, F. Hussain, M. Ijaz Khan, E.R. Asad-ur-Rehman, Y.-M. El-Zahar, M.Y.M. Chu, Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl. Math. Comput. 420, 15 (2022). https://doi.org/10.1016/j.amc.2021.126868

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Sheikholeslami, M. Jafaryar, A. Shafee, H. Babazadeh, Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J. Clean. Prod. 261, 121206 (2020)

    Article  Google Scholar 

  56. A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transf. 13, 297–318 (1988)

    Article  ADS  Google Scholar 

  57. X. Ma, M. Sheikholeslami, M. Jafaryar, A. Shafee, T. Nguyen-Thoi, Z. Li, Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J. Clean. Prod. 245, 118888 (2020)

    Article  Google Scholar 

  58. S. Chingulpitak, H.S. Ahn, L.G. Asirvatham, S. Wongwises, Fluid flow and heat transfer characteristics of heat sinks with laterally perforated plate fins. Int. J. Heat Mass Transf. 138, 293–303 (2019)

    Article  Google Scholar 

  59. S. Alqaed, F.A. Almehmadi, J. Mustafa, S. Husain, G. Cheraghian, Effect of nano phase change materials on the cooling process of a triangular lithium battery pack. J. Energy Storage 51, 104326 (2022)

    Article  Google Scholar 

  60. M.E. Polat, U. Furkan, S. Cadirci, Multi-objective optimization and performance assessment of microchannel heat sinks with micro pin-fins. Int. J. Therm. Sci. 174, 107432 (2022)

    Article  Google Scholar 

  61. H. Wang, Z. Liu, Wu. Huiying, Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array. Energy 138, 739–751 (2017)

    Article  Google Scholar 

  62. Y. Xu, H. Zhang, F. Yang, L. Tong, D. Yan, Y. Yang, Y. Wang, Y. Wu, Experimental investigation of pneumatic motor for transport application. Renew. Energy 179, 517–527 (2021). https://doi.org/10.1016/j.renene.2021.07.072

    Article  Google Scholar 

  63. S. Hu, H. Wu, X. Liang, C. Xiao, Q. Zhao, Y. Cao, X. Han, A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model. Chemosphere (Oxford) 287, 131987 (2022). https://doi.org/10.1016/j.chemosphere.2021.131987

    Article  ADS  Google Scholar 

  64. H. Wu, F. Zhang, Z. Zhang, L. Hou, Atomization and droplet dynamics of a gas-liquid two-phase jet under different mass loading ratios. Int. J. Multiph. Flow 15, 104043 (2022). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104043

    Article  Google Scholar 

  65. B. Chen, Y. Lu, W. Li, X. Dai, X. Hua, J. Xu, Z. Wang, C. Zhang, D. Gao, Y. Li, L. Zhang, DPM-LES investigation on flow field dynamic and acoustic characteristics of a twin-fluid nozzle by multi-field coupling method. Int. J. Heat Mass Transf. (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122927

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project number (IF-PSAU 2021/01/18270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. Selim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selim, M.M., Mousa, A. Numerical technique for simulation of melting within air ventilation system. Eur. Phys. J. Plus 137, 644 (2022). https://doi.org/10.1140/epjp/s13360-022-02848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02848-8

Navigation