Skip to main content

Advertisement

Log in

Pressure-induced topological phase transition in XMR material YbAs: a first-principles study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Many rare-earth monopnictides having extremely large magnetoresistance (XMR) show topologically non-trivial nature under applied hydrostatic pressure. We find that YbAs which show XMR effect, is stable in rocksalt structure (NaCl-type) for entire studied pressure range (0–40 GPa). The structural phase transition to CsCl-type structure takes place at 67 GPa which is in fine agreement with previous experimental study. We also verify its dynamical stability from phonon dispersion spectrum. This material undergoes topological phase transition (trivial to non-trivial) under applied hydrostatic pressure of 6 GPa and retains this non-trivial nature up to 39.5 GPa without breaking any symmetry. This quantum phase transition is associated with spin–orbit coupling effect. We find the band inversions near the Fermi level at X and Γ point at 6 GPa and 39.5 GPa, respectively, and verified the same with the help of band parities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.L. Kane, E.J. Mele, Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005). https://doi.org/10.1103/PhysRevLett.95.146802

    Article  ADS  Google Scholar 

  2. L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007). https://doi.org/10.1103/PhysRevLett.98.106803

    Article  ADS  Google Scholar 

  3. J.E. Moore, The birth of topological insulators. Nature 464, 194 (2010). https://doi.org/10.1038/nature08916

    Article  ADS  Google Scholar 

  4. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  ADS  Google Scholar 

  5. M.Z. Hasan, J.E. Moore, Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys. 2, 55 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140432

    Article  ADS  Google Scholar 

  6. M.Z. Hasan, S.-Y. Xu, M. Neupane, in Topological Insulators: Fundamentals and Perspectives, 1st edn., ed. by F. Ortmann, S. Roche, S.O. Valenzuela (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 55–100

    Google Scholar 

  7. A.A. Burkov, Topological semimetals. Nat. Mater. 15, 1145 (2016). https://doi.org/10.1038/nmat4788

    Article  ADS  Google Scholar 

  8. H. Gao, J.W.F. Venderbos, Y. Kim, A.M. Rappe, Topological semimetals from first principles. Annu. Rev. Mater. Res. 49, 153 (2019). https://doi.org/10.1146/annurev-matsci-070218

    Article  ADS  Google Scholar 

  9. N.P. Armitage, E.J. Mele, A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids. RMP 90, 015001 (2018). https://doi.org/10.1103/RevModPhys.90.015001

    Article  MathSciNet  Google Scholar 

  10. A.A. Burkov, M.D. Hook, L. Balents, Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011). https://doi.org/10.1103/PhysRevB.84.235126

    Article  ADS  Google Scholar 

  11. B. Yan, C. Felser, Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337 (2017). https://doi.org/10.1146/annurev-conmatphys

    Article  ADS  Google Scholar 

  12. S. Khalid, F.P. Sabino, A. Janotti, Topological phase transition in LaAs under pressure. Phys. Rev. B 98, 220102(R) (2018). https://doi.org/10.1103/PhysRevB.98.220102

    Article  ADS  Google Scholar 

  13. R. Lou, B.-B. Fu, Q.N. Xu, P.-J. Guo, L.-Y. Kong, L.-K. Zeng, J.-Z. Ma, P. Richard, C. Fang, Y.-B. Huang, S.-S. Sun, Q. Wang, L. Wang, Y.-G. Shi, H.C. Lei, K. Liu, H.M. Weng, T. Qian, H. Ding, S.-C. Wang, Evidence of topological insulator state in the semimetal LaBi. Phys. Rev. B 95, 115140 (2017). https://doi.org/10.1103/PhysRevB.95.115140

    Article  ADS  Google Scholar 

  14. X. Duan, F. Wu, J. Chen, P. Zhang, Y. Liu, H. Yuan, C. Cao, Tunable electronic structure and topological properties of LnPn (Ln = Ce, Pr, Sm, Gd, Yb; Pn = Sb, Bi). Commun. Phys. 1, 71 (2018). https://doi.org/10.1038/s42005-018-0074-8

    Article  Google Scholar 

  15. M. He, H. Sun, Q.L. He, Topological insulator: spintronics and quantum computations. Front. Phys. 14, 4 (2019). https://doi.org/10.1007/s11467-019-0893-4

    Article  Google Scholar 

  16. Y. Fan, K.L. Wang, Spintronics based on topological insulators. SPIN 6, 2 (2016). https://doi.org/10.1142/S2010324716400014

    Article  Google Scholar 

  17. P.J. Guo, H.-C. Yang, K. Liu, Z.Y. Lu, Theoretical study of the pressure-induced topological phase transition in LaSb. Phys. Rev. B 96, 081112(R) (2017). https://doi.org/10.1103/PhysRevB.96.081112

    Article  ADS  Google Scholar 

  18. P.J. Guo, H.-C. Yang, B.-J. Zhang, K. Liu, Z.-Y. Lu, Charge compensation in extremely large magnetoresistance materials LaSb and LaBi revealed by first-principles calculations. Phys. Rev. B 93, 235142 (2016). https://doi.org/10.1103/PhysRevB.93.235142

    Article  ADS  Google Scholar 

  19. Y.-Y. Wang, H. Zhang, X.-Q. Lu, L.L. Sun, S. Xu, Z.-Y. Lu, K. Liu, S. Zhou, T.-L. Xia, Extremely large magnetoresistance and electronic structure of TmSb. Phys. Rev. B 97, 085135 (2018). https://doi.org/10.1103/PhysRevB.97.085137

    Article  ADS  Google Scholar 

  20. H.Y. Yang, T. Nummy, H. Li, S. Jaszewski, M. Abramchuk, D.S. Dessau, F. Tafti, Extreme magnetoresistance in the topologically trivial lanthanum monopnictide LaAs. Phys. Rev. B 96, 235128 (2017). https://doi.org/10.1103/PhysRevB.96.235128

    Article  ADS  Google Scholar 

  21. O. Pavlosiuk, P. Swatek, D. Kaczorowski, P. Wiśniewski, Magnetoresistance in LuBi and YBi semimetals due to nearly perfect carrier compensation. Phys. Rev. B 97, 235132 (2018). https://doi.org/10.1103/PhysRevB.97.235132

    Article  ADS  Google Scholar 

  22. Y. Sun, S.C. Wu, B. Yan, Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP. Phys. Rev. B 92, 115428 (2015). https://doi.org/10.1103/PhysRevB.92.115428

    Article  ADS  Google Scholar 

  23. M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Large, non-saturating magnetoresistance in WTe2. Nature 514, 205 (2014). https://doi.org/10.1038/nature13763

    Article  ADS  Google Scholar 

  24. J. Jiang, F. Tang, X.C. Pan, H.M. Liu, X.H. Niu, Y.X. Wang, D.F. Xu, H.F. Yang, B.P. Xie, F.Q. Song, P. Dudin, T.K. Kim, M. Hoesch, P.K. Das, I. Vobornik, X.G. Wan, D.L. Feng, Signature of strong spin–orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys. Rev. Lett. 115, 166601 (2015). https://doi.org/10.1103/PhysRevLett.115.166601

    Article  ADS  Google Scholar 

  25. T. Liang, Q. Gibson, M.N. Ali, M. Liu, R.J. Cava, N.P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280 (2015). https://doi.org/10.1038/nmat4143

    Article  ADS  Google Scholar 

  26. P. Wadhwa, S. Kumar, A. Shukla, R. Kumar, First principles investigation of topological phase in XMR material TmSb under hydrostatic pressure. J. Phys. Condens. Matter 31, 335401 (2019). https://doi.org/10.1088/1361-648X/ab1f5b

    Article  Google Scholar 

  27. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, G. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015). https://doi.org/10.1103/PhysRevX.5.031023

    Article  Google Scholar 

  28. N.J. Ghimire, Y. Luo, M. Neupane, D.J. Williams, E.D. Bauer, F. Ronning, Magnetotransport of single crystalline NbAs. J. Phys. Condens. Matter 27, 152201 (2015). https://doi.org/10.1088/0953-8984/27/15/152201

    Article  ADS  Google Scholar 

  29. P. Barone, T. Rauch, D.D. Sante, J. Henk, I. Mertig, S. Picozzi, Pressure-induced topological phase transitions in rocksalt chalcogenides. Phys. Rev. B 88, 045207 (2013). https://doi.org/10.1103/PhysRevB.88.045207

    Article  ADS  Google Scholar 

  30. W. Xie, Y. Wu, F. Du, A. Wang, H. Su, Y. Chen, Z.Y. Nie, S.-K. Mo, M. Smidman, C. Cao, Y. Liu, T. Takabatake, H.Q. Yuan, Magnetotransport and electronic structure of the antiferromagnetic semimetal YbAs. Phys. Rev. B 101, 085132 (2020). https://doi.org/10.1103/PhysRevB.101.085132

    Article  ADS  Google Scholar 

  31. E. Cheng, W. Xia, X. Shi, C. Wang, C. Xi, S. Xu, D.C. Peets, L. Wang, H. Su, L. Pi, W. Ren, X. Wang, N. Yu, Y. Chen, W. Zhao, Z. Liu, Y. Guo, S. Li, Magnetism-induced topological transition in EuAs3 (2020). http://arxiv.org/abs/2006.16045

  32. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1995). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  34. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 16 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  35. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 3 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. B 77, 18 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  37. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  ADS  Google Scholar 

  38. L. Fu, C.L. Kane, Topological insulators with inversion symmetry. Phys. Rev. 76, 045302 (2007). https://doi.org/10.1103/PhysRevB.76.045302

    Article  ADS  Google Scholar 

  39. J. Hayashi, I. Shirotani, T. Adachi, O. Shimomura, T. Kikegawa, Phase transitions of YbX (X = P, As and Sb) with a NaCl-type structure at high pressures. Philos. Mag. Lett. 84, 3663 (2004). https://doi.org/10.1080/14786430412331284469

    Article  ADS  Google Scholar 

  40. L. Degiorgi, S. Teraoka, G. Compagnini, P. Wachter, Optical and Raman investigation of Yb pnictide compounds. Phys. Rev. B 47, 10 (1992). https://doi.org/10.1103/PhysRevB.47.5715

    Article  Google Scholar 

  41. B. Winkler, V. Milman, Revised prediction of B1 to B2 phase transition pressures in YbN, YbP and YbAs. Z. Kristallogr. Cryst. Mater. 220, 700 (2005). https://doi.org/10.1524/zkri.220.8.700.67080

    Article  Google Scholar 

  42. P.K. Jha, S.P. Sanyal, Pressure–volume relation and pressure induced structural phase transformation in ytterbium pnictides. Phys. Stat. Sol. (b) 205, 465 (1998). https://doi.org/10.1002/(sici)1521-3951(199802)205:2%3c465::aid-pssb465%3e3.0.co;2-i

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (Ramesh Kumar) would like to thank Council of Scientific and Industrial Research (CSIR), Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtiyar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kumar, R. & Bibiyan, R.K. Pressure-induced topological phase transition in XMR material YbAs: a first-principles study. Eur. Phys. J. Plus 137, 633 (2022). https://doi.org/10.1140/epjp/s13360-022-02841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02841-1

Navigation