Skip to main content
Log in

Relativistic bound states of the pseudoharmonic potential in the presence of external magnetic and Aharonov–Bohm fields

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The analytical solutions of the Dirac equation are presented in this paper in the presence of external fields using the formula method with the pseudoharmonic potential. The exact spin symmetry and pseudospin symmetry case are examined. Using a mapping to the non-relativistic limit for the exact spin symmetry limit, the non-relativistic energies are obtained both in the presence of the external field and in the absence of the field (in 3D). As an application, the non-relativistic energy eigenvalues of the N2, CH, CO and NO molecules under the influence of the external fields is presented. Furthermore, the ro-vibrational energies of the selected molecules are obtained in 3D. The results of the study are found to be consistent with the literature with the small variation arising from methodology and possibly due to difference in the conversion factors used for obtaining the energy of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

All data included in this manuscript are available upon request by contacting the corresponding author.

References

  1. P. Davidson, Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 135, 459 (1932)

    ADS  Google Scholar 

  2. I.I. Goldman, V.D. Krivchenkov, Problems in quantum mechanics (Pergamon Press, New York, 1961)

    Google Scholar 

  3. O. Aydogdu, R. Sever, Few-Body Syst. 47, 193 (2010)

    Article  ADS  Google Scholar 

  4. O. Aydogdu, R. Sever, Phys. Scr. 80, 015001 (2009)

    Article  ADS  Google Scholar 

  5. B. Biswas, S. Debnath, Acta Phys. Pol. A 130, 692 (2016)

    Article  ADS  Google Scholar 

  6. A.N. Ikot, H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Commun. Theor. Phys. 61, 436 (2014)

    Article  ADS  Google Scholar 

  7. M. Hamzavi, A.A. Rajabi, H. Hassanabadi, Int. J. Mod. Phys. A 26, 1363 (2011)

    Article  ADS  Google Scholar 

  8. S.M. Ikhdair, M. Hamzavi, Chin. Phys. B 21, 110302 (2012)

    Article  Google Scholar 

  9. S. Ortakaya, Chin. Phys. B 22, 070303 (2013)

    Article  Google Scholar 

  10. K.J. Oyewumi, F.O. Akinpelu, A.D. Agboola, Int. J. Theor. Phys. 47, 1039 (2008)

    Article  Google Scholar 

  11. S.M. Ikhdair, R. Sever, J. Mol. Struct: THEOCHEM 806, 155 (2007)

    Article  Google Scholar 

  12. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet et al., Heliyon 6, e03738 (2020)

    Article  Google Scholar 

  13. A. Ghanbari, R. Khordad, Chem. Phys. 534, 110732 (2020)

    Article  Google Scholar 

  14. P. Ghosh, D. Nath, Int J Quantum Chem. e26517 (2020).

  15. W.A. Yahya, K.J. Oyewumi, K.D. Sen, Int. J. Quantum Chem. 115, 1543 (2015)

    Article  Google Scholar 

  16. S.M. Ikhdair, M. Hamzavi, Physica B 407, 4198 (2012)

    Article  ADS  Google Scholar 

  17. R. Sever, C. Tezcan, M. Aktas, O. Yesiltas, J. Math. Chem. 43, 845 (2007)

    Article  Google Scholar 

  18. S.H. Dong, Appl. Math. Lett. 16, 199 (2003)

    Article  MathSciNet  Google Scholar 

  19. S.H. Dong, Z.Q. Ma, Int. J. Mod. Phys. E 11, 155 (2002)

    Article  ADS  Google Scholar 

  20. L.Y. Wang, X.Y. Gu, Z.Q. Ma, S.H. Dong, Found. Phys. Lett. 15, 569 (2002)

    Article  MathSciNet  Google Scholar 

  21. F. Maiz, M.M. Alqahtani, Pramana J. Phys. 94, 162 (2020)

    Article  ADS  Google Scholar 

  22. H. Karayer, Eur. Phys. J. Plus 135, 70 (2020)

    Article  Google Scholar 

  23. C.O. Edet, A.N. Ikot, Mol. Phys. e1957170 (2021).

  24. C.O. Edet, P.O. Amadi, M.C. Onyeaju, U.S. Okorie, R. Sever et al., J. Low Temp. Phys. 202, 83 (2021)

    Article  ADS  Google Scholar 

  25. C.O. Edet, A.N. Ikot, J. Low Temp. Phys. 203, 1 (2021)

    Article  Google Scholar 

  26. A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Eur. Phys. J. D 74, 159 (2020)

    Article  ADS  Google Scholar 

  27. M. Eshghi, H. Mehraban, S.M. Ikhdair, Eur. Phys. J. A 52, 201 (2016)

    Article  ADS  Google Scholar 

  28. S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Ann. Phys. 353, 282 (2015)

    Article  ADS  Google Scholar 

  29. M. Eshghi, H. Mehraban, S.M. Ikhdair, Chin. Phys. B 26, 060302 (2017)

    Article  ADS  Google Scholar 

  30. K.R. Purohit, R.H. Parmar, A.K. Rai, Ann. Phys. 424, 168335 (2020)

    Article  Google Scholar 

  31. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Ann. Phys. (Berlin) 1 (2013).

  32. M. Hamzavi, S.M. Ikhdair, B.J. Falaye, Ann. Phys. 341, 153 (2014)

    Article  ADS  Google Scholar 

  33. A. Chenaghlou, S. Aghaei, N.G. Niari, Mod. Phys. Lett. A 36, 2150109 (2021)

    Article  ADS  Google Scholar 

  34. C.P. Onyenegecha, A.I. Opara, I.J. Njoku, S.C. Udensi, U.M. Ukewuihe, C.J. Okereke, A. Omame, Res. Phys. 25, 104144 (2021)

    Google Scholar 

  35. I.J. Njoku, C.P. Onyenegecha, C.J. Okereke, A.I. Opara, U.M. Ukewuihe, F.U. Nwaneho, Res. Phys. 24, 104208 (2021)

    Google Scholar 

  36. C.P. Onyenegecha, I.J. Njoku, A. Omame, C.J. Okereke, E. Onyeocha, Heliyon 7, e08023 (2021)

    Article  Google Scholar 

  37. C.P. Onyenegecha, U.M. Ukewuihe, A.I. Opara, C.B. Agbakwuru, C.J. Okereke, N.R. Ugochukwu, S.A. Okolie, I.J. Njoku, Eur. Phys. J. Plus 135, 571 (2020)

    Article  Google Scholar 

  38. C.P. Onyenegecha, E.E. Oguzie, I.J. Njoku, A. Omame, C.J. Okereke, U.M. Ukewuihe, Eur. Phys. J. Plus 136, 1153 (2021)

    Article  Google Scholar 

  39. C.P. Onyenegecha, C.A. Onate, O.K. Echendu, A.A. Ibe, H. Hassanabadi, Eur. Phys. J. Plus 135, 289 (2020)

    Article  Google Scholar 

  40. L. Máthé, C.P. Onyenegecha, A.-A. Farcas, L.-M. Pioras-Timbolmas, M. Solaimani, H. Hassanabadi, Phys. Lett. A 397, 127262 (2021)

    Article  Google Scholar 

  41. J.A. Obu, P.O. Okoi, U.S. Okorie, Indian J. Phys. 95, 505 (2021)

    Article  ADS  Google Scholar 

  42. D. Nath, A.K. Roy, Int J Quantum Chem. 121, e26616 (2021)

    Article  Google Scholar 

  43. D. Nath, A.K. Roy, Chem. Phys. Lett. 780, 138909 (2021)

    Article  Google Scholar 

  44. I.B. Okon, E. Omugbe, A.D. Antia, C.A. Onate, L.E. Akpabio, O.E. Osafile, Sci. Rep. 11, 892 (2021)

    Article  ADS  Google Scholar 

  45. E.S. Eyube, J.B. Yerima, A.D. Ahmed, Phys. Scr. 96, 055001 (2021)

    Article  ADS  Google Scholar 

  46. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Few-Body Syst. 56, 63 (2014)

    Article  ADS  Google Scholar 

  47. A.D. Alhaidari, H. Bahlouli, A. Al-Hasan, Phys Lett A 349, 87 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. S.M. Ikhdair, R. Sever, J. Mol. Struct. THEOCHEM 806, 155 (2007)

    Article  Google Scholar 

  49. T. Das, A. Arda, Adv. High Energy Phys. 2015, 1 (2015)

    Article  Google Scholar 

  50. The NIST reference on constants, units and uncertainty, physics.nist.gov/cuu/Constants/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Njoku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njoku, I.J., Onyenegecha, C.P., Okereke, C.J. et al. Relativistic bound states of the pseudoharmonic potential in the presence of external magnetic and Aharonov–Bohm fields. Eur. Phys. J. Plus 137, 842 (2022). https://doi.org/10.1140/epjp/s13360-022-02833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02833-1

Navigation