Skip to main content
Log in

Inflation in energy-momentum squared gravity in light of Planck2018

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study cosmological dynamics of the energy-momentum squared gravity. By adding the squared of the matter field’s energy-momentum tensor (\(\zeta \, \mathbf{T} ^{2}\)) to the Einstein–Hilbert action, we obtain the Einstein’s field equations and study the conservation law. We show that, the presence of \(\zeta \, \mathbf{T} ^{2}\) term, breaks the conservation of the energy-momentum tensor of the matter fields. However, an effective energy-momentum tensor in this model is conserved in time. By considering the FRW metric as the background, we find the Friedmann equations and by which we explore the cosmological inflation in \(\zeta \,\mathbf{T} ^{2}\) model. We perform a numerical analysis on the perturbation parameters and compare the results with Planck2018 different data sets at \(68\%\) and \(95\%\) CL, to obtain some constraints on the coupling parameter \(\zeta \). We show that, for \(0< \zeta \le 2.1\times 10^{-5}\), the \(\zeta \, \mathbf{T} ^{2}\) gravity is an observationally viable model of inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this article.

References

  1. A. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  2. A.D. Linde, Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  3. A. Albrecht, P. Steinhard, Phys. Rev. D 48, 1220 (1982)

    ADS  Google Scholar 

  4. A.D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, Chur, 1990)

    Book  Google Scholar 

  5. A. Liddle, D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  6. J.E. Lidsey et al., Rev. Mod. Phys. 69, 373 (1997)

    Article  ADS  Google Scholar 

  7. D.H. Lyth, A.R. Liddle, The Primordial Density Perturbation (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  8. J.M. Maldacena, JHEP 0305, 013 (2003)

    Article  ADS  Google Scholar 

  9. N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto, Phys. Rep. 402, 103 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. X. Chen, Adv. Astron. 2010, 638979 (2010)

    Article  ADS  Google Scholar 

  11. A. De Felice, S. Tsujikawa, Phys. Rev. D 84, 083504 (2011)

    Article  ADS  Google Scholar 

  12. A. De Felice, S. Tsujikawa, JCAP 1104, 029 (2011)

    Article  Google Scholar 

  13. K. Nozari, N. Rashidi, Phys. Rev. D 88, 023519 (2013)

    Article  ADS  Google Scholar 

  14. K. Nozari, N. Rashidi, Adv. High Energy Phys. (2016). https://doi.org/10.1155/2016/1252689

    Article  Google Scholar 

  15. K. Nozari, N. Rashidi, Phys. Rev. D 93(2016)

  16. N. Rashidi, K. Nozari, Int. J. Mod. Phys. D 27, 1850076 (2018)

    Article  ADS  Google Scholar 

  17. K. Nozari, N. Rashidi, Astrophys. J. 863, 133 (2018)

    Article  ADS  Google Scholar 

  18. K. Nozari, N. Rashidi, Astrophys. J. 882, 78 (2019)

    Article  ADS  Google Scholar 

  19. N. Rashidi, K. Nozari, Astrophys. J. 890, 58 (2020)

    Article  ADS  Google Scholar 

  20. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59–144 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1–104 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  23. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.A. Starobinsky, JETP Lett. 86, 157 (2007)

    Article  ADS  Google Scholar 

  25. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 93, 084050 (2016)

  26. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Mod. Phys. Lett. A 31, 1650172 (2016)

    Article  ADS  Google Scholar 

  27. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, JCAP 1605, 046 (2016)

    Article  ADS  Google Scholar 

  28. A. De Felice, S. Tsujikawa, Living Rev. Rel 13 (2010)

  29. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Y.S. Song, W. Hu, I. Sawicki, Phys. Rev. D 75, 044004 (2007)

  31. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Class. Quantum. Grav. 33, 125017 (2016)

  32. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, https://doi.org/10.1016/j.nuclphysb.2019.02.008(2019)

  33. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 99, 064049 (2019)

  34. R.H.S. Budhi, https://doi.org/10.1088/1742-6596/1127/1/012018 (2017)

  35. O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo, Phys. Rev. D 75, 104016 (2007)

  36. T. Harko, Phys. Lett. B 669, 376 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Thakur, A.A. Sen, T.R. Seshadri, Phys. Lett. B 696, 309 (2011)

    Article  ADS  Google Scholar 

  38. O. Bertolamim, J. Paramos, Class. Quantum Grav. 25, 5017 (2008)

    Google Scholar 

  39. C.G. Boehmer, T. Harko, F.S.N. Lobo, Astropart. Phys. 29, 386 (2008)

    Article  ADS  Google Scholar 

  40. V. Faraoni, Phys. Rev. D 80, 124040 (2009)

  41. T. Harko, F.S.N. Lobo, Eur. Phys. J. C Part. Fields 70, 373 (2010)

    Article  ADS  Google Scholar 

  42. S. Nojiri, S.D. Odintsov, Phys. Lett. B 599, 137 (2004)

    Article  ADS  Google Scholar 

  43. G. Allemandi, A. Borowiec, M. Francaviglia, S.D. Odintsov, Phys. Rev. D 72, 063505 (2005)

  44. O. Bertolami, J. Paramos, Phys. Rev. D 77, 084018 (2008)

  45. V. Faraoni, Phys. Rev. D 76, 127501 (2007)

  46. T. Harko, Phys. Rev. D 81, 044021 (2010)

  47. F. Rajabi, K. Nozari, Phys. Rev. D 96, 084061 (2017)

  48. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

  49. S.K. Sahu, S.K. Tripathy, P.K. Sahoo, A. Nath, Chin. J. Phys. 55, 862–869 (2017)

    Article  Google Scholar 

  50. J. Wu, G. Li, T. Harko, S.-D. Liang, Eur. Phys. J. C 78, 430 (2018)

    Article  ADS  Google Scholar 

  51. D.D. Pawar, S.P. Shahare, https://doi.org/10.1016/j.newast.2019.101318 (2019)

  52. M. Roshan, F. Shojai, Phys. Rev. D 94, 044002 (2016)

  53. Planck Collaboration: N. Aghanim et al. (2018). arXiv:1807.06209 [astro-ph.CO]

  54. Planck Collaboration: Y. Akrami et al. (2018). arXiv:1807.06209 [astro-ph.CO]

  55. Planck Collaboration: Y. Akrami et al. (2018). arXiv:1807.06211 [astro-ph.CO]

  56. X. Zhang, C.-Y. Chen, Y. Reyimuaji, https://doi.org/10.48550/ arXiv:2108.07546 (2022)

  57. N. Nari, M. Roshan, Phys. Rev. D 98, 024031 (2018)

  58. C.V.R. Board, J.D. Barrow, Phys. Rev. D 96(12), 123517 (2017)

  59. P.H.R.S. Moraes, R.A.C. Correa, G. Ribeiro, Eur. Phys. J. 78, 192 (2018)

    Article  ADS  Google Scholar 

  60. T.P. Sotiriou, V. Faraoni, Class. Quant. Grav. 25, 205002 (2008)

  61. O. Bertolami, F.S.N. Lobo, J. Paramos, Phys. Rev. D 78, 064036 (2008)

  62. A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2003)

    MATH  Google Scholar 

  63. J. Martin, C. Ringeval, V. Vennin, Phys. Dark Univ. 5–6, 75 (2014)

    Article  Google Scholar 

  64. K. Bamba, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Phys. Rev. D 90, 124061 (2014)

  65. S. Bhattacharjee, J.R.L. Santos, P.H.R.S. Moraes, P.K. Sahoo, Eur. Phys. J. Plus 135, 576 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the referee for the very insightful comments that have improved the quality of the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Rashidi.

Appendix

Appendix

We have the following Lienard differential equation

$$\begin{aligned} {\ddot{H}} + A H \dot{H} + B H^3 = 0\,, \end{aligned}$$

where

$$\begin{aligned} A = \frac{4 \, \zeta }{\kappa } \end{aligned}$$

and

$$\begin{aligned} B = \frac{- 27 \, \zeta }{\kappa }\pm \frac{2 \, \Lambda }{\kappa ^2}\, \end{aligned}$$

By assuming \( H \equiv y \), we can rewrite the above Lienard equation as follows

$$\begin{aligned} \ddot{y} + f(y) \dot{y} + g(y) =0\,, \end{aligned}$$

where

$$\begin{aligned} f(y) = A \, y \,, \end{aligned}$$

and

$$\begin{aligned} g(y) = B \, y^3 \,. \end{aligned}$$

Now, we define \(w(y) = \dot{y}\) and by which we convert our Lienard equation to the Abel differential equation of the second kind as

$$\begin{aligned} w w' + f(y) w + g(y) = 0\,, \end{aligned}$$

with \(w w' = \ddot{y}\) and \( w' \equiv \frac{\hbox {d}w}{\hbox {d}y}\). By introducing \(z=\int F(y) \hbox {d}y\), with \( F(y) = -A y\) and \( G(y) = - B y^3\), the Abel equation takes the following canonical form

$$\begin{aligned} w w_{,z} = w + \phi (z)\,, \end{aligned}$$

where “, z” demonstrates derivative with respect to z, and

$$\begin{aligned} \phi (z) = \frac{G(y)}{F(y)}\,. \end{aligned}$$

Considering that

$$\begin{aligned} z = - \frac{A y^2}{2}\,, \end{aligned}$$

we find the following expression for \(\phi (z)\)

$$\begin{aligned} \phi (z) = \frac{B}{A}\, y^2 \,, \end{aligned}$$

leading to

$$\begin{aligned} w w_{,z}=w + \frac{B}{A} \, y^2 =w+D\,z\,. \end{aligned}$$

By defining \(k(z)=Dz\), we get

$$\begin{aligned} w w_{,z}=w+k(z)\,, \end{aligned}$$

which has the following solution

$$\begin{aligned} z={{\mathcal {C}}} \exp \bigg ( - \int {\frac{\sigma \hbox {d}\sigma }{ \sigma ^2 - \sigma - D } } \bigg )\,,\quad w={{\mathcal {C}}}\sigma \exp \bigg ( - \int {\frac{\sigma \hbox {d}\sigma }{ \sigma ^2 - \sigma - D } } \bigg ). \end{aligned}$$

Now, we can obtain the Hubble parameter and its derivatives. From \(y\equiv H\) and \(z=-\frac{Ay^2}{2}\), we find

$$\begin{aligned} H = \left( \frac{-2z}{A}\right) ^{\frac{1}{2}}. \end{aligned}$$

Using \({\dot{H}}={\dot{y}}=w\), we obtain

$$\begin{aligned} \dot{H} = \sigma \,z\,. \end{aligned}$$

Also, from \({\ddot{H}} = w w'\) and considering that \(\frac{\hbox {d}w}{\hbox {d}y}\equiv \frac{\hbox {d}w}{\hbox {d}z}\frac{\hbox {d}z}{\hbox {d}y}\), we get

$$\begin{aligned} {\ddot{H}} = -A \left( \frac{\sigma + D}{\sigma }\right) H \dot{H}\,. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, M., Rashidi, N. & Nozari, K. Inflation in energy-momentum squared gravity in light of Planck2018. Eur. Phys. J. Plus 137, 593 (2022). https://doi.org/10.1140/epjp/s13360-022-02820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02820-6

Navigation