Skip to main content
Log in

Investigation of the effect of water droplet injection on condensation flow of different nozzles geometry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present study, the effect of droplet injection of Moore A (MA), and De Laval nozzles (De) on the condensation shock, has been modeled and compared. The Eulerian–Eulerian method has been used in two-dimensional, compressible, viscous, and turbulent using the kω SST turbulence model to simulate the condensation flow field numerically. Four different nozzle inlet injection modes are evaluated; droplet injection in all cases caused a weaker condensation shock in the MA nozzle and could eliminate the De nozzle's shock. Also, the Mach number has increased by 2 and 5% at the output of the MA and De nozzles. The droplet spraying does not affect MA nozzle's wetness fraction, but it is reduced by about 30% at the De nozzle output. In general, the results showed that spray droplets at the inlet depend on geometry to improve aerodynamic and thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Area (m2)

\(C_{{\text{p}}}\) :

Specific heat capacity, (J/kg K1)

\(B1,B2\) :

Virial coefficients

d :

Droplet diameter (m)

\(E\) :

Total energy (J kg1)

\(H_{0}\) :

Throat height (m)

\(J\) :

Nucleation rate (m−3 s1)

\(K_{{\text{b}}}\) :

Boltzmann's constant

\(L\) :

Latent heat (J kg1)

\(P\) :

Pressure (Pa)

\(P_{0}\) :

Inlet total pressure (Pa)

\(P_{{\text{s}}} (T_{{\text{v}}} )\) :

Saturation pressure at TG (Pa)

\(q_{{\text{c}}}\) :

Condensation coefficient

\(r\) :

Droplet radius (m)

\(r^{*}\) :

Critical radius of droplets (m)

\(R\) :

Gas constant (J/kg K1)

\(T_{{\text{v}}} ,{ }T_{{\text{l}}}\) :

Vapor and liquid temperature (K)

\(T_{0}\) :

Inlet total temperature (K)

\(T_{{\text{s}}} (P)\) :

Saturation temperature at P

\(t\) :

Time (s)

\(\omega\) :

Wetness fraction

\(\mu\) :

Dynamic viscosity (Pa s)

\(\gamma\) :

Specific heat ratio

\(\phi\) :

Non-isothermal correction coefficient

\(\rho_{{\text{v}}} , \rho_{{\text{l}}}\) :

Vapor and liquid density (kg/m3)

\(\sigma_{r}\) :

Liquid surface tension (N/m)

\({\text{v, l}}\) :

Vapor, liquid

\({\text{s}}\) :

Saturation

\({*}\) :

Critical condition

References

  1. A. Zhao, S. Guo, X. Qi, S. Gao, J. Sun, Numerical study on the nano-droplets formation process from superheated steam condensation flow effected by nozzle convergent profile. Int. Commun. Heat Mass Transf. 104, 109–117 (2019)

    Article  Google Scholar 

  2. D.A. Simpson, A.J. White, Viscous and unsteady flow calculations of condensing steam in nozzles. Int. J. Heat Fluid Flow 26, 71–79 (2005)

    Article  Google Scholar 

  3. A.M. Dolatabadi, F. Salmani, E. Lakzian, Analysis of heterogeneous nucleation and erosion behavior considering the injection of impurities into wet steam flow using poly-dispersed method. Int. J. Heat Mass Transf. 185, 122392 (2022)

    Article  Google Scholar 

  4. G. Zhang, X. Zhang, D. Wang, Z. Jin, X. Qin, Performance evaluation and operation optimization of the steam ejector based on modified model. Appl. Therm. Eng. 163, 114388 (2019)

    Article  Google Scholar 

  5. D. Dadpour, E. Lakzian, M. Gholizadeh, H. Ding, X. Han, Numerical modeling of droplets injection in the secondary flow of the wet steam ejector in the refrigeration cycle. Int. J. Refrig. 136, 103–113 (2022)

    Article  Google Scholar 

  6. C. Wen, H. Ding, Y. Yang, Optimisation study of a supersonic separator considering nonequilibrium condensation behaviour. Energy Convers. Manag. 222, 113210 (2020)

    Article  Google Scholar 

  7. C. Wen, N. Karvounis, J.H. Walther, H. Ding, Y. Yang, Non-equilibrium condensation of water vapour in supersonic flows with shock waves. Int. J. Heat Mass Transf. 149, 119109 (2020)

    Article  Google Scholar 

  8. S. Senoo, A.J. White, Analysis and design of wet-steam stages, Advances in Steam Turbines for Modern Power Plants, pp. 165–218 (2017)

  9. J. Liu, L. Wang, L. Jia, Z. Li, H. Zhao, A control oriental model for combined compression-ejector refrigeration system. Energy Convers. Manag. 138, 538–546 (2017)

    Article  Google Scholar 

  10. J. Bodys, M. Palacz, M. Haida, J. Smolka, A.J. Nowak, K. Banasiak, A. Hafner, Full-scale multi-ejector module for a carbon dioxide supermarket refrigeration system: numerical study of performance evaluation. Energy Convers. Manag. 138, 312–326 (2017)

    Article  Google Scholar 

  11. C. Wen, N. Karvounis, J.H. Walther, Y. Yan, Y. Feng, Y. Yang, An efficient approach to separate CO2 using supersonic flows for carbon capture and storage. Appl. Energy 238, 311–319 (2019)

    Article  Google Scholar 

  12. M. Kermani, A. Gerber, A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow. Int. J. Heat Mass Transf. 46, 3265–3278 (2003)

    Article  MATH  Google Scholar 

  13. M.A.F. Aliabadi, E. Lakzian, A. Jahangiri, I. Khazaei, Numerical investigation of effects polydispersed droplets on the erosion rate and condensation loss in the wet steam flow in the turbine blade cascade. Appl. Therm. Eng. 164, 114478 (2020)

    Article  Google Scholar 

  14. A.G. Gerber, Two-phase Eulerian/Lagrangian model for nucleating steam flow. J. Fluids Eng. 124, 465–475 (2002)

    Article  Google Scholar 

  15. S.M.A. Noori Rahim Abadi, R. Kouhikamali, K. Atashkari, Two-fluid model for simulation of supersonic flow of wet steam within high-pressure nozzles. Int. J. Therm. Sci. 96, 173–182 (2015)

    Article  Google Scholar 

  16. G. Zhang, S. Dykas, P. Li, H. Li, J. Wang, Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system. Energy 212, 118690 (2020)

    Article  Google Scholar 

  17. S. Dykas, W. Wróblewski, Single- and two-fluid models for steam condensing flow modeling. Int. J. Multiph. Flow 37, 1245–1253 (2011)

    Article  Google Scholar 

  18. W. Wróblewski, S. Dykas, Two-fluid model with droplet size distribution for condensing steam flows. Energy 106, 112–120 (2016)

    Article  Google Scholar 

  19. Y. Yang, J.H. Walther, Y. Yan, C. Wen, CFD modeling of condensation process of water vapor in supersonic flows. Appl. Therm. Eng. 115, 1357–1362 (2017)

    Article  Google Scholar 

  20. F.M.S. El Terhy Aa, Numerical Study on condensation process of steam flow in nozzles. Int. J. Adv. Technol. 06, 01 (2015)

    Article  Google Scholar 

  21. A. Kafaei, F. Salmani, E. Lakzian, W. Wróblewski, M.S. Vlaskin, Q. Deng, The best angle of hot steam injection holes in the 3D steam turbine blade cascade. Int. J. Therm. Sci. 173, 107387 (2022)

    Article  Google Scholar 

  22. D.J. Ryley, H.K. Al-Azzawi, Suppression of the deposition of nucleated fog droplets on steam turbine stator blades by blade heating. Int. J. Heat Fluid Flow 4, 207–216 (1983)

    Article  Google Scholar 

  23. A.J. Rahvard, E. Lakzian, F. Foroozesh, A. Khoshnevis, An applicable surface heating in a two-phase ejector refrigeration. Eur. Phys. J. Plus 137, 2 (2022)

    Article  Google Scholar 

  24. A.M. Dolatabadi, S. Masoumi, E. Lakzian, Optimization variables of the injection of hot-steam into the non-equilibrium condensing flow using TOPSIS method. Int. Commun. Heat Mass Transf. 129, 105674 (2021)

    Article  Google Scholar 

  25. M. Ali Faghih Aliabadi, G. Zhang, S. Dykas, H. Li, Control of two-phase heat transfer and condensation loss in turbine blade cascade by injection water droplets. Appl. Therm. Eng. 186, 116541 (2021)

    Article  Google Scholar 

  26. A. Ebrahimi-Fizik, E. Lakzian, A. Hashemian, Numerical investigation of wet inflow in steam turbine cascades using NURBS-based mesh generation method. Int. Commun. Heat Mass Transf. 1(118), 104812 (2020 Nov)

    Article  MATH  Google Scholar 

  27. G. Zhang, S. Dykas, S. Yang, X. Zhang, H. Li, J. Wang, Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Appl. Therm. Eng. 171, 115090 (2020)

    Article  Google Scholar 

  28. S.M.A. Noori Rahim Abadi, A. Ahmadpour, S.M.N.R. Abadi, J.P. Meyer, CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl. Therm. Eng. 112, 1575–1589 (2017)

    Article  Google Scholar 

  29. G. Zhang, F. Wang, D. Wang, T. Wu, X. Qin, Z. Jin, Numerical study of the dehumidification structure optimization based on the modified model. Energy Convers. Manag. 181, 159–177 (2019)

    Article  Google Scholar 

  30. M.A. Faghih Aliabadi, A. Jahangiri, I. Khazaee, E. Lakzian, Investigating the effect of water nano-droplets injection into the convergent-divergent nozzle inlet on the wet steam flow using entropy generation analysis. Int. J. Therm. Sci. 149, 106181 (2020)

    Article  Google Scholar 

  31. M.A. Faghih Aliabadi, M. Bahiraei, Effect of water nano-droplet injection on steam ejector performance based on non-equilibrium spontaneous condensation: a droplet number study. Appl. Therm. Eng. 184, 116236 (2021)

    Article  Google Scholar 

  32. S. Yamamoto, S. Moriguchi, H. Miyazawa, T. Furusawa, Effect of inlet wetness on transonic wet-steam and moist-air flows in turbomachinery. Int. J. Heat Mass Transf. 119, 720–732 (2018)

    Article  Google Scholar 

  33. X. Han, Y. Yuan, Z. Zhao, Y. Wang, W. Zeng, Z. Han, Numerical investigation of the wet steam condensation flow characteristics in stator cascade with blade surface heating. Eng. Appl. Comput. Fluid Mech. 14, 1251–1262 (2020)

    Google Scholar 

  34. M.A.F. Aliabadi, E. Lakzian, I. Khazaei, A. Jahangiri, A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade. Energy 190, 116397 (2020)

    Article  Google Scholar 

  35. M.S. Mirhoseini, M. Boroomand, Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles. Energy 141, 1027–1037 (2017)

    Article  Google Scholar 

  36. G. Zhang, L. Wang, S. Zhang, Y. Li, Z. Zhou, Effect evaluation of a novel dehumidification structure based on the modified model. Energy Convers. Manag. 159, 65–75 (2018)

    Article  Google Scholar 

  37. M. Vatanmakan, E. Lakzian, M.R. Mahpeykar, Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating. Energy 147, 701–714 (2018)

    Article  Google Scholar 

  38. G. Zhang, S. Dykas, M. Majkut, K. Smołka, X. Cai, Experimental and numerical research on the effect of the inlet steam superheat degree on the spontaneous condensation in the IWSEP nozzle. Int. J. Heat Mass Transf. 165, 120654 (2021)

    Article  Google Scholar 

  39. C. Wen, Y. Yang, H. Ding, C. Sun, Y. Yan, Wet steam flow and condensation loss in turbine blade cascades. Appl. Therm. Eng. 189, 116748 (2021)

    Article  Google Scholar 

  40. S. Yazdani, E. Lakzian, Numerical simulation and passive control of condensing flow through turbine blade by NVD Method Using Eulerian–Lagrangian model. Comput. Math. Appl. 80, 140–160 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Mazzelli, F. Giacomelli, A. Milazzo, CFD modeling of condensing steam ejectors: Comparison with an experimental test-case. Int. J. Therm. Sci. 127, 7–18 (2018)

    Article  Google Scholar 

  42. J. Blazek, Computational Fluid Dynamics, 3rd edn, 2015

  43. C. Wen, B. Rogie, M.R. Kærn, E. Rothuizen, A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles. Appl. Energy 260, 113958 (2020)

    Article  Google Scholar 

  44. M.P. Vukalovich, Thermodynamic properties of water and steam (Mashgis, Moscow, 1958)

    Google Scholar 

  45. X.D. Wang, J.-L. Dong, T. Wang, J.-Y. Tu, Numerical analysis of spontaneously condensing phenomena in nozzle of steam-jet vacuum pump. Vacuum 86, 861–866 (2012)

    Article  ADS  Google Scholar 

  46. F. Salmani, M.R. Mahpeykar, Dimensional analysis for estimating wetness terms of condensing steam using dry flow data. J. Therm. Anal. Calorim. 137, 2121–2134 (2019)

    Article  Google Scholar 

  47. P.G. Hill, Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25, 593–620 (1966)

    Article  ADS  Google Scholar 

  48. G. Gyarmathy, Bases for a Theory for Wet Steam Turbines, Institute for Thermal Turbomachines, Federal Technical, Univ. Zurich, 6 (1964)

  49. M.J. Moore, P.T. Walters, R.I. Crane, B.J. Davidson, Predicting the Fog Drop Size in Wet Steam Turbines, Wet Steam, pp. 101–109 (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Lakzian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakzian, E., Yazdani, S., Mobini, R. et al. Investigation of the effect of water droplet injection on condensation flow of different nozzles geometry. Eur. Phys. J. Plus 137, 613 (2022). https://doi.org/10.1140/epjp/s13360-022-02812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02812-6

Navigation