Skip to main content
Log in

Algebraic techniques for Maxwell’s equations in commutative quaternionic electromagnetics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 10 June 2022

This article has been updated

Abstract

The Maxwell’s equations of commutative quaternions play an important role in commutative quaternion electromagnetism. This paper studies the problem of solutions to Maxwell’s equations of commutative quaternions by means of a real representation of commutative quaternion matrices. This paper first derives an algebraic technique for finding solutions of the least squares eigen-problem \(\Vert A\alpha -\alpha \lambda \Vert _F=\min \) of the commutative quaternion matrix and also gives algebraic technique for finding the eigenvalues and corresponding eigenvectors of the commutative quaternion matrix. A numerical experiment is provided to demonstrate the feasibility of the real representation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. T.M. Huang, T. Li, R.L. Chern, W.W. Lin, Electromagnetic field behavior of 3D Maxwell’s equations for chiral media. J. Comput. Phys. 379, 118–131 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. H.T. Anastassiu, P.E. Atlamazoglou, D.I. Kaklamani, Application of bicomplex (quaternion) algebra to fundamental electromagnetics: a lower order alternative to the Helmholtz equation. IEEE Trans. Antennas Propag. 51, 2130–2136 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Agarwal, M.P. Goswami, R.P. Agarwal, K.K. Venkataratnam, D. Baleanu, Solution of Maxwells wave equations in bicomplex space. Roman. J. Phys. 62, 115 (2017)

    Google Scholar 

  4. C. Segre, The real representations of complex elements and extension to bicomplex systems. Math. Ann. 40, 413–467 (1892)

    Article  MathSciNet  Google Scholar 

  5. F. Catoni, Commutative (Segres) Quaternion fields and relation with Maxwell equations. Adv. Appl. Clifford Algebras 18, 9–28 (2008)

    Article  MathSciNet  Google Scholar 

  6. S. Pei, J. Chang, J. Ding, M. Chen, Eigenvalues and singular value decompositions of reduced biquaternion matrices. IEEE Trans. Circuits Syst. I: Regul. Pap. 55, 2673–2685 (2008)

    Article  MathSciNet  Google Scholar 

  7. S. Gai, M. Wan, L. Wang, C. Yang, Reduced quaternion matrix for color texture classification. Neural Comput. Appl. 25, 945–954 (2014)

    Article  Google Scholar 

  8. S. Gai, G. Yang, M. Wan, L. Wang, Denoising color images by reduced quaternion matrix singular value decomposition. Multidim. Syst. Sign Process. 26, 307–320 (2015)

    Article  MathSciNet  Google Scholar 

  9. S. Pei, J. Chang, J. Ding, Commutative reduced biquaternions and their Fourier transform for signal and image processing applications, Transactions on. Signal Process. 52, 2012–2031 (2004)

    MathSciNet  MATH  Google Scholar 

  10. T. Isokawa, H. Nishimura, N. Matsui, Commutative quaternion and multistate Hopfield neural networks. International Joint Conference on Neural Networks, 2010

  11. M. Kobayashi, Twin-multistate commutative quaternion Hopfield neural networks. Neurocomputing 320, 150–156 (2018)

    Article  Google Scholar 

  12. H.H. Kösal, M. Tosun, Commutative quaternion matrices. Adv. Appl. Clifford Algebras 24, 769–779 (2014)

    Article  MathSciNet  Google Scholar 

  13. F. Catoni, R. Cannata, P. Zampetti, An introduction to commutative quaternions. Adv. Appl. Clifford Algebras 16, 1–28 (2006)

    Article  MathSciNet  Google Scholar 

  14. H.H. Kösal, M. Tosun, Some equivalence relations and results over the commutative quaternions and their matrices. An. St. Univ. Ovidius Constanta 25, 125–142 (2017)

    MathSciNet  MATH  Google Scholar 

  15. F. Catoni, R. Cannata, P. Zampetti, An Introduction to Constant Curvature Spaces in the Commutative (Segre) Quaternion Geometry. Adv. Appl. Clifford Algebras 16, 85–101 (2006)

    Article  MathSciNet  Google Scholar 

  16. H.H. Kösal, M. Kyiǧit, M. Tosun, Consimilarity of conmmutative quaternion matrices, Miskolc. Mathematical Notes 16, 965–977 (2015)

    Google Scholar 

  17. H.H. Kösal, M. Tosun, Universal similarity factorization equalities for commutative quaternions and their matrices. Linear Multilinear Algebra 67, 926–938 (2018)

    Article  MathSciNet  Google Scholar 

  18. D. Zhang, Z. Guo, G. Wang, T. Jiang, Algebraic techniques for least squares problems in commutative quaternionic theory. Math. Meth. Appl. Sci. 43, 3513–3523 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vasily. I. Vasiliev or Tongsong Jiang.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

This paper is supported by the Shandong Natural Science Foundation (ZR201709250116) and Chinese Government Scholarship (CSC NO. 202108370087, CSC NO. 202108370086)

The original online version of this article was revised to amend the order of author names in the xml to Zhenwei Guo, Dong Zhang, Vasily. I. Vasiliev, Tongsong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Zhang, D., Vasiliev, V.I. et al. Algebraic techniques for Maxwell’s equations in commutative quaternionic electromagnetics. Eur. Phys. J. Plus 137, 577 (2022). https://doi.org/10.1140/epjp/s13360-022-02794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02794-5

Navigation