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Abstract The Rashba effect has been investigated in a spherical quantum dot confined by a radial parabolic potential. Also,
external parallel magnetic and electric fields have been applied. The solution of the Schrödinger equation in the presence of the
Rashba interactions has been derived by applying an approach that differs from the one used in an earlier treatment. The wave
function in the presence of these interactions has been expanded in terms of the eigenfunctions of the Hamiltonian in their absence.
In our opinion, the form introduced for the wave function presents the exact solution in a more accurate manner. The coefficients
of expansion have been chosen either to depend on the three quantum numbers involved or on the principal quantum number only.
The results have shown that the Rashba interactions have a considerable effect on the electron energy levels and on their splitting.
The variation of this effect with the applied fields and the Rashba coupling strength has been investigated.

1 Introduction

Nowadays, the spin orbit interactions have gained a great attention in low-dimensional structures from both the theoretical and
experimental points of view. The three main types of spin orbit interactions are conventional, Dresselhaus and Rashba interactions.

The conventional interactions result naturally due to the motion of the electron in its orbit. This motion, in turn, causes a coupling
between the electron spin and its angular momentum (Griffiths [1] and Shankar [2]). Very few studies have been considered to
explore such interactions in low-dimensional structures. Mikhail et al. [3, 4] have recently investigated this type of interactions in
single and multilayered quantum dots in the presence of central and off-central impurities.

The Dresselhaus interactions (Dresselhaus [5]) result in crystals which possess a lack of symmetry under reflection about a plane
that involves at least one lattice point. They have been studied by Lu and Li [6] in the presence of a magnetic field and by Vaseghi
et al. [7] in the presence of a spatial electric field.

The Rashba interactions (Rashba [8, 9]) are the most important type of spin orbit interactions that occur in low-dimensional
structures. They occur in two-dimensional geometries. Their coupling coefficient is much higher than that of Dresselhaus interactions.
They mainly depend on the inversion symmetry breaking in the direction perpendicular to the two-dimensional structure. They have
been investigated in two-dimensional electron systems such as quantum discs [10–13]. They have further been investigated in a two-
dimensional electron gas in the presence of an external magnetic field. The study has been extended to explore the magneto-quantum
transport and magneto-thermodynamics properties of the system [14–19]. The Rashba interactions have also been investigated
under the effect of electric and magnetic fields in a one-dimensional parabolic confinement quantum well wire [20–22] and in a
two-dimensional electron system (Papp and Micu [23]). The same problem was also studied on a circular cylinder of constant radius
(Mehdiyev et al. [24]) and in a spherical quantum dot by Vaseghi et al. [25, 26].

Moreover, the linear and third-order nonlinear optical properties in the presence of Rashba interactions have been investigated
in low-dimensional structures by many authors [20, 26–33]. Also, the effect of the Rashba interactions on the binding energy of a
hydrogenic impurity has been considered by Vanitha et al. [34] in a quantum well and by Safaei et al. [35] in quantum nanowires.
Furthermore, the Rashba effect has been studied by Sainy et al. [36] in a two-dimensional Gaussian GaAs quantum dot in the
presence of a central impurity and an external magnetic field.

The present work is concerned with studying the effect of the Rashba spin orbit interactions in the presence of external magnetic
and electric fields in a radial parabolic confinement spherical quantum dot. The same problem was previously considered by Vaseghi
et al. [25, 26]. In Refs. [25, 26], the eigenfunction in the presence of Rashba interactions was taken in the same form as Mehdiyev
et al. [24]. This form depends on one eigenfunction of the Hamiltonian operator in the absence of the Rashba interaction. It was valid
in Mehdiyev et al. [24] since they have considered a circular cylinder of constant radius ρ. Accordingly, it is also an eigenfunction of
the spin orbit operator and of the total Hamiltonian. However, in the case of a spherical quantum dot the polar coordinate ρ varies and
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accordingly the suggested form is not a suitable choice for the eigenfunction after taking the Rashba effect into consideration. In the
present work, an alternative approach has been applied. We have expanded the wave function of the total Hamiltonian after including
the Rashba effect as a linear combination of the eigenfunctions of the Hamiltonian in the absence of the Rashba interactions. Similar
approaches have been applied hitherto in other problems, for example by Akbari et al. [37] to study the spin orbit interactions in a
two-dimensional quantum pseudo-dot system and by Shakouri et al. [38] to investigate these interactions in a quasi-one-dimensional
quantum rings.In the present work, the coefficients of the expansion have been taken either to depend on the three quantum numbers
involved or to depend only on the principal quantum number. In the latter case, one-band and two-band models have been considered.
The results have been applied to the case of GaAs spherical quantum dot. The change of the lower energy eigenvalues due to the
Rashba interactions has been investigated. The variation of the Rashba effect has been studied with the applied magnetic field, the
electric field, and with the strength of the Rashba coupling.

The paper is organized as follows: The basic equations are considered in Sect. 2, where the forms of the Hamiltonian and the
Rashba spin orbit operators have been given as well as the forms of the eigenfunctions and eigenvalues in the absence of the
Rashba interactions. The general expansion solution in the presence of the Rashba interactions is presented in Sect. 3. Regarding,
the coefficients of the expansion two alternative assumptions have been utilized. In Sect. 4, they have been taken to depend on the
three quantum numbers involved while in Sect. 5, they have been taken to depend only on the principal quantum number. In the
latter case, two models have been explored, namely the one-band and the two-band models. Finally the numerical results obtained
for a GaAs quantum dot are discussed in Sect. 6.

2 Basic equations

The Hamiltonian operator of an electron in a spherical quantum dot confined by a radial parabolic potential in the form 1
2m

∗ω2
or

2

under the influence of external electric and magnetic fields with Rashba spin orbit interaction (SOI) can be represented by

Ĥ � Ĥo + ĤSO , (1)

where in cylindrical coordinates

Ĥo � − �
2

2m∗

(
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

∂2

∂z2 +
1

ρ2

∂2

∂φ2

)
+

1

2
ωc L̂ z +

m∗�2ρ2

8
− eFz +

m∗ω2
oz

2

2
. (2)

In the above equation ωo is the angular frequency that determines the confined potential, L̂ z is the component of the angular
momentum along the direction of the magnetic field B, m∗ is the electron effective mass, F is the electric field, ωc is the cyclotron
frequency defined by

ωc � eB

m∗ , (3)

and

� �
√

ω2
c + 4ω2

o. (4)

It is worthwhile pointing out that the use of cylindrical coordinates in Eq. (2) is valid since the parabolic potential is extended to
infinity and accordingly no boundary conditions have to be applied at the surface of the sphere.

The Rashba SOI Hamiltonian in an external magnetic field B applied along thez-axis is given by

ĤSO � α

�

(
σ ×

(
P̂ + eA

))
.n, (5)

where P̂ is the momentum operator, α is the strength of the Rashba interaction, σ � (σx , σy, σz) denotes the Pauli spin matrices, n
is normal to the surface and A is the vector potential. The normal to the surface is taken to be

n � −eρ � −cos(φ)i − sin(φ) j , (6)

in Cartesian coordinates. Also, using the symmetric Landau gauge, A takes the form

A � B

2
(−y, x, 0), (7)

A �
(
Aρ � 0, Aφ � Bρ

2
, Az � 0

)
. (8)

Equations (7), and (8) give the components of A in Cartesian and cylindrical polar coordinates, respectively. It, then, follows
from Eq. (5) that Ĥso can be expressed in cylindrical polar coordinates

ĤSO � − iα

ρ

∂

∂φ
σz + iαcos(φ)

∂

∂z
σy − iαsin(φ)

∂

∂z
σx +

αeBρ

2�
σz . (9)
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Now, the Schrödinger equation corresponding to the Hamiltonian operator Ĥo is given by

Ĥo	 � Eo	. (10)

The separation of variables technique implies consequently

ψnmnz (ρ, φ, z) � 1√
2π

eimφ fnm(ρ)Gnz (z), (11)

where n,m, nz are the radial, magnetic and azimuthal quantum numbers which result due to the solution of the Schrödinger Eq. (10).
It can be shown by substituting from Eq. (11) in Eq. (10) that fnm(ρ) can be expressed as

fnm(ρ) ≡ fnm(ζ ) � 1

a

√
n!

(n + |m|)!e
−ζ
2 ζ

|m|
2 L |m|

n (ζ ), (12)

where L |m|
n (ζ ) is the associated Laguerre polynomial and

a �
√

�

m∗�
, ζ � ρ2

2a2 . (13)

Also, Gnz (z) takes the form

Gnz (z) �
√

W

π1/22nz nz!
e− 1

2 X
2
Hnz (X), (14)

where Hnz (X) is the Hermite polynomial and

W �
√
m∗ωo

�
, X � W (z − zo), zo � eF

m∗ω2
o
. (15)

The corresponding energy eigenvalues of Ĥo are accordingly given by

Eo(n,m,nz) � ��

(
n +

1 + |m|
2

)
+
m�ωc

2
+ �ωo

(
nz +

1

2

)
− e2F2

2m∗ω2
o
. (16)

3 The general expansion solution

The Schrödinger equation corresponding to the total Hamiltonian Ĥ (Eq. 1) takes the form

Ĥ	 � E	. (17)

In Vaseghi et al. [25, 26], 	 has been taken in the form e± 1
2 iφψ , where ψ is one of the eigenfunctions of Ho while the term e± 1

2 iφ

represents the spinor Sz . It is readily shown that the resulting form of 	 is not an eigenfunction of ĤSO and of Ĥ . It seems that this
procedure is invalid for the present calculations. In fact, Vaseghi et al. [25, 26] have resembled the calculations of Mehdiyev et al.
[24]. However, in Ref. [24], the situation was entirely different as the study was performed for a circular cylinder of constant radius
ρ.

Here, we apply an alternative approach in which the eigenfunctions ψnmnz (ρ, φ, z) of Ĥo will be taken as an orthonormal basis.
Accordingly, the general solution 	(ρ, φ, z) of Eq. (17) can be expanded as

	 �
∑
nmnz

ψnmnz (ρ, φ, z)
(
C+
nmnz

∣∣∣+ > +C−
nmnz

∣∣∣− >
)
. (18)

The substitution of Eq. (18) in (17) and the comparison of the coefficients of eimφ and |+ >, |− > on both sides lead to the
following two basic equations:

∑
nnz

C+
nmnz

(
Eonmnz − E +

αm

a
√

2ζ
+
eBαa

√
ζ√

2�

)
fnm(ζ )Gnz (z) + α

∑
nnz

C−
n(m+1)nz

fn,m+1(ζ )
d

dz

(
Gnz (z)

) � 0. (19)

and

−α
∑
nnz

C+
n(m−1)nz fn,m−1(ζ )

d

dz

(
Gnz (z)

)
+

∑
nnz

C−
nmnz

(
Eonmnz − E − αm

a
√

2ζ
− eBαa

√
ζ√

2�

)
fnm(ζ )Gnz (z) � 0. (20)
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It is readily shown that

d

dz

(
Gnz (z)

) �
√

W

π
1
2 2nz nz!

W

[
nzHnz−1(X) − 1

2
Hnz+1(X)

]
e− 1

2 X
2
. (21)

In deriving the above result, we have utilized the properties of the Hermite polynomial given in (Lebedev [39]). On substituting
from Eq. (21) in Eqs. (19), (20), multiplying by Gn′

z
(z) and using the normalization conditions

∞∫
−∞

Hnz (x)Hn′
z
(x)e−x2

dx � δnzn
′
z

(
π

1
2 2nz nz!

)
(22a)

and
∞∫

−∞
Gnz (z)Gn′

z
(z)dz � δnzn

′
z
, (22b)

it can be shown after some algebra that

∑
n

C+
nmn′

z

(
Eonmn′

z
− E +

αm

a
√

2ζ
+

αeBa√
2�

√
ζ

)
fnm(ζ )

+
αW√

2

∑
n

[
C−
n(m+1)

(
n′
z+1

)
√
n′
z + 1 − C−

n(m+1)
(
n′
z−1

)
√
n′
z

]
fn,m+1(ζ ) � 0

(23)

and

−αW√
2

∑
n

[
C+
n(m−1)

(
n′
z+1

)
√
n′
z + 1 − C+

n(m−1)
(
n′
z−1

)
√
n′
z

]
fn,m−1(ζ )

+
∑
n

C−
nmn′

z

(
Eonmn′

z
− E − αm

a
√

2ζ
+

αeBa√
2�

√
ζ

)
fnm(ζ ) � 0.

(24)

Equations (23), (24) are the most general two equations which relate the coefficientsC±
nmnz together. In the following two sections,

we discuss two different approaches to deal with these coefficients.

4 The coefficients C±
nmnz depend on all quantum numbers

Here we treat the problem with the coefficients of expansion depending on the three quantum numbers (n,m, nz). We first replace
m by m + 1 in Eq. (24) to find

−αW√
2

∑
n

[
C+
nm

(
n′
z+1

)
√
n′
z + 1 − C+

nm
(
n′
z−1

)
√
n′
z

]
fnm(ζ )

+
∑
n

C−
n(m+1)n′

z

(
Eon(m+1)n′

z
− E − α(m + 1)

a
√

2ζ
− αeBa√

2�

√
ζ

)
fn(m+1)(ζ ) � 0.

(25)

The second and third steps are to replace n
′
z in Eq. (25) by n

′
z − 1 and n

′
z + 1. The resulting two equations are

−αW√
2

∑
n

[
C+
nmn′

z

√
n′
z − C+

nm
(
n′
z−2

)
√
n′
z − 1

]
fnm(ζ )

+
∑
n

C−
n(m+1)

(
n′
z−1

)
(
E
on(m+1)

(
n′
z−1

) − E − α(m + 1)

a
√

2ζ
− αeBa√

2�

√
ζ

)
fn(m+1)(ζ ) � 0.

(26)

and

−αW√
2

∑
n

[
C+
nm

(
n′
z+2

)
√
n′
z + 2 − C+

nmn′
z

√
n′
z + 1

]
fnm(ζ )

+
∑
n

C−
n(m+1)

(
n′
z+1

)
(
E
on(m+1)

(
n′
z+1

) − E − α(m + 1)

a
√

2ζ
− αeBa√

2�

√
ζ

)
fn(m+1)(ζ ) � 0.

(27)

123



Eur. Phys. J. Plus         (2022) 137:610 Page 5 of 12   610 

For the lower energy levels, we take m � 0, n
′
z � 0. Also, for a certain energy band (certain value of n), we find from Eqs. (23),

(26), (27) that

C+
n00

(
Eon00 − E +

αeBa√
2�

√
ζ

)
fn0(ζ ) +

αW√
2
C−
n11 fn1(ζ ) � 0, (28)

−αW√
2

(−C+
n0,−2

)√−1 fn0(ζ ) + C−
n1,−1

(
Eon1,−1 − E − α

a
√

2ζ
− αeBa√

2�

√
ζ

)
fn1 � 0 (29)

and

−αW√
2

(
C+
n02

√
2 − C+

noo

)
fn0(ζ ) + C−

n11

(
Eon11 − E − α

a
√

2ζ
− αeBa√

2�

√
ζ

)
fn1(ζ ) � 0. (30)

We only consider the successive coefficients. Thus, the coefficients C+
n0,−2 in Eq. (29) and C+

n02 in Eq. (30) can be neglected.

Accordingly, Eq. (29) implies that C−
n1,−1 � 0 in this type of calculations. Consequently, Eqs. (28), (30) imply that

C+
n00

(
Eon00 − E +

αeBa√
2�

√
ζ

)
fn0(ζ ) +

αW√
2
C−
n11 fn1(ζ ) � 0 (31)

and

αW√
2
C+
n00 fn0(ζ ) + C−

n11

(
Eon11 − E − α

a
√

2ζ
− αeBa√

2�

√
ζ

)
fn1(ζ ) � 0. (32)

The functions fnm(ζ ) involved in Eqs. (31), (32) can be determined from Eq. (12). We further restrict ourselves to the case n � 1
which represents the possible lower energy levels related by Eqs. (31), (32). It can thus be shown from Eqs. (31), (32) that

C+
100

(
Eo100 − E +

αeBa√
2�

√
ζ

)
f10(ζ ) +

αW√
2
C−

111 f11(ζ ) � 0 (33)

and

αW√
2
C+

100 f10(ζ ) + C−
111

(
Eo111 − E − α

a
√

2ζ
− αeBa√

2�

√
ζ

)
f11(ζ ) � 0, (34)

where

f10(ζ ) � 1

a
e− ζ

2 L1(ζ ) (35a)

and

f11(ζ ) � 1

a
√

2
e− ζ

2 ζ
1
2 L1

1(ζ ). (35b)

We, now, multiply Eq. (33) by f10(ζ ) and Eq. (34) by f11(ζ ) and integrate over ρdρ � a2dζ from 0 to ∞. The resulting two
equations are given by

C+
100

[
Eo100 − E +

αeBa√
2�

J1

]
+

αW

2
C−

111 J2 � 0 (36)

and

αW

2
C+

100 J2 + C−
111

[
Eo111 − E − α

2a
√

2
J3 − αeBa

2
√

2�
J4

]
� 0 (37)

where

J1 �
∞∫

0

e−ζ
√

ζ (L1(ζ ))2dζ ,

J2 �
∞∫

0

e−ζ
√

ζ L1(ζ )L1
1(ζ )dζ ,

J3 �
∞∫

0

e−ζ
√

ζ
(
L1

1(ζ )
)2
dζ
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and

J4 �
∞∫

0

e−ζ ζ 3/2(L1
1(ζ )

)2
dζ. (38)

The integrals given in Eq. (38) are obtained by substituting for f10(ζ ), f11(ζ ) from Eqs. (35a, b). Also, in deriving Eqs. (36),
(37) we have used the orthonormality condition

a2

∞∫
0

fnm(ζ ) fn′m(ζ )dζ � δnn′ . (39)

Now, for a nontrivial solution of Eqs. (36), (37) the determinant of the coefficients C+
100,C

−
111 must vanish. Accordingly,

[
Eo100 − E +

αeBa√
2�

J1

][
Eo111 − E − α

2a
√

2
J3 − αeBa

2
√

2�
J4

]
−

(
αW

2
J2

)2

� 0. (40)

The roots of Eq. (40) determine the new energy levels which replace Eo100, Eo111 after taking the Rashba effect into consideration.
The results are given and discussed in Sect. 6.

5 The coefficients C±
nmnz depend only on the principal quantum number (n)

In this section, we proceed to investigate the possibility of choosing the coefficients of expansion in Eq. (18) to depend only on the
principal (radial) quantum number n. We thus drop the dependence of the coefficients C±

nmn′
z

on m, n
′
z in Eqs. (23), (24). Also, for

the lower involved energy levels we take m � 0, n
′
z � 0 in these equations to find

∑
n

C+
n

(
Eon00 − E +

αeBa√
2�

√
ζ

)
fn0(ζ ) +

αW√
2

∑
n

C−
n fn1(ζ ) � 0 (41)

and

−αW√
2

∑
n

C+
n fn,−1(ζ ) +

∑
n

C−
n

(
Eon00 − E − αeBa√

2�

√
ζ

)
fn0(ζ ) � 0. (42)

The functions fn0(ζ ), fn1(ζ ) can be determined from Eq. (12). Also, it is readily shown from Eq. (12) that fn,−1(ζ ) � fn1(ζ ).
Consequently, we multiply both Eqs. (41), (42) by fn′ 0(ζ ) and integrate over ρdρ � a2dζ from 0 to ∞. Hence,

C+
n′(Eon′00 − E) +

∑
n

C+
n

αeBa√
2�

In′n +
αW√

2

∑
n

C−
n√

n + 1
Kn′n � 0 (43)

and

−αW√
2

∑
n

C+
n√

n + 1
Kn′n + C−

n′ (Eon′00 − E) − αeBa√
2�

∑
n

C−
n In′n � 0, (44)

where

In′n �
∞∫

0

e−ζ
√

ζ Ln′(ζ )Ln(ζ )dζ � Inn′

and

Kn′n �
∞∫

0

e−ζ
√

ζ Ln′(ζ )L1
n(ζ )dζ. (45)

It is of importance to point out that the integrals J1, J2 used in the previous section are equivalent to the integrals I11, K11,
respectively.
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5.1 One-band model

In this model, we consider only the terms due to certain n, n
′

in Eqs. (43), (44). Thus, for n � n
′ � 1 we take into account the first

term that results from the summations in these equations to find

C+
1

(
Eo100 − E +

αeBa√
2�

I11

)
+

αW

2
C−

1 K11 � 0 (46)

and

−αW

2
C+

1 K11 + C−
1

(
Eo100 − E − αeBa√

2�
I11

)
� 0 (47)

For a nontrivial solution, it can be shown that

Eo100 − E � ±
√(

αeBa√
2�

I11

)2

−
(

αW

2
K11

)2

. (48)

The integrals I11, K11 can be replaced by J1, J2 as was pointed out above. Moreover, Eq. (48) restricts the value of the magnetic
field (B) to be higher than a certain lower limit for the quantity under the square root in Eq. (48) to be positive.

5.2 Two-band model

In the two-band model, we extend the results of the one band model and first take n
′ � 1 in Eqs. (43), (44), and consider the terms

n � 1, 2 from the summations in these equations. Also, the energy Eo100 will be denoted by Eo1 for simplicity. The resulting two
equations are accordingly given by[

Eo1 − E +
αeBa√

2�
I11

]
C+

1 +

[
αW

2
K11

]
C−

1 +

[
αeBa√

2�
I12

]
C+

2 +

[
αW√

6
K12

]
C−

2 � 0 (49)

and [
−αW

2
K11

]
C+

1 +

[
Eo1 − E − αeBa√

2�
I11

]
C−

1 −
[

αW√
6

K12

]
C+

2 −
[

αeBa√
2�

I12

]
C−

2 � 0. (50)

We then take n
′ � 2 in Eqs. (43), (44), consider the terms for n � 1, 2 and denote Eo200 by Eo2 to find[

αeBa√
2�

I21

]
C+

1 +

[
αW

2
K21

]
C−

1 +

[
Eo2 − E +

αeBa√
2�

I22

]
C+

2 +

[
αW√

6
K22

]
C−

2 � 0 (51)

and

−
[

αW

2
K21

]
C+

1 −
[

αeBa√
2�

I21

]
C−

1 −
[

αW√
6

K22

]
C+

2 +

[
Eo2 − E − αeBa√

2�
I22

]
C−

2 � 0. (52)

It also follows from Eq. (45) that I12 � I21. For a nontrivial solution, the determinant of the coefficients of C+
1 ,C−

1 ,C+
2 ,C−

2 in
Eqs. (49) to (52) must vanish. It can then be shown after some manipulations that

X1X2 − (Eo1 − E)(Eo2 − E)
(
S−

2 Q+
1 + Q−

1 S+
2

)
+S+

2 Q
+
1

(
Q−

1 S−
2 − S−

1 Q−
2

) − Q−
1 S−

2 S+
1 Q

+
2 � 0,

(53)

where

X1 � (Eo1 − E)2 − S+
1 S

−
1 (54a)

and

X2 � (Eo2 − E)2 − Q+
2Q

−
2 . (54b)

Also,

S±
1 � χ I11 ± αW

2
K11, S

±
2 � χ I12 ± αW√

6
K12,

Q±
1 � χ I12 ± αW

2
K21, Q

±
2 � χ I22 ± αW√

6
K22

and

χ � αeBa√
2�

. (55)
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Fig. 1 Graph of the energy levels
[a Eo1, E1±)one band; b Eo2,
E2±)one band and c E1±)two band,
E2±)two band] against the
magnetic fieldB. The values of the
other parameters involved in the
calculations are given by Eq. (56)

(a) (b)

(c)

Equation (53) can be solved numerically to determine the four energy values after taking the Rashba effect into consideration.
Moreover, the equation X1 � 0 leads to Eq. (48) in the case of the one-band model while the equation X2 � 0 leads to the analogous
equation concerning Eo2.

6 Numerical results

The quantum dot has been taken to be a typical GaAs spherical semiconductor. Accordingly

m∗ � 0.067mo

We have investigated the variation of the Rashba effect with the applied magnetic field (B), the applied electric field (F) and the
strength of the Rashba coupling coefficient (α) at a constant angular frequency (ωo) of the parabolic confining potential.

In Fig. 1, we have started by studying the variation of the lower energy eigenvalues with the applied magnetic field in the absence
and presence of the Rashba effect. We have taken

F � 5 × 105 V/m, ωo � 1.5 × 1013s−1, α � 10−11eVm. (56)

In the absence of the Rashba effect, the two energies involved in Eq. (53) (two band model) are Eo1 ≡ Eo100, Eo2 ≡ Eo200. They
can be determined from Eq. (16) and are displayed in Figs. 1a, b, respectively, against the applied magnetic field. Also, in Fig. 1a
the two energy levels which result from the splitting of Eo1 by taking the Rashba effect into consideration and applying the one
band model (X1 � 0, (Eq. 48)) have been depicted. The analogous two energy levels which result from Eo2 are given in Fig. 1b.
They are determined from the equation X2 � 0. Finally, Fig. 1c is devoted to represent the four energy levels which result due to
the consideration of the Rashba effect and by using the two band model (Eq. 53).

It is worthwhile pointing out that for B ≥ 6T the quantities S+
1 S

−
1 and Q+

2Q
−
2 which appear, respectively, in the two equations

X1 � 0, X2 � 0 are positive. Accordingly within the one band model and consequently within the two band model the energy levels
which result in the range 10T ≤ B ≤ 30T considered in Figs. 1a, b, c are real.

At B � 10T , the two energy levels Eo1, Eo2 are found from Eq. (16) to be

Eo1 � 42.8369 meV, Eo2 � 69.0759 meV.

If the Rashba effect is taken into consideration Eo1 splits according to the one band model into the two energies

E1±)one band � Eo1 ±
√
S+

1 S
−
1 (57a)
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Fig. 2 Plot of the energy levels
Eo100, Eo111 in the absence of the
Rashba effect and the energies
E100, E111 after taking the
Rashba effect into account and
using Eq. (40)

while Eo2 splits into

E2±)one band � Eo2 ±
√
Q+

2Q
−
2 (57b)

According to the results shown in Fig. 1a, b

E1±)one band�43.8048, 41.8689 meV

and

E2±)one band � 70.4088, 67.743 meV.

Thus the percentage difference between E1±)one band and Eo1 is of the order of ±2.26% while between E2±)oneband and Eo2 is
of the order of ±1.958%. Also for the two band model, the first two energies E1±)two band are branched from Eo1 while the other
two energies E2±)twoband are branched from Eo2. The difference between the results of the two band and one band models never
exceeds 1%. The results obtained over the whole range of magnetic fields considered in Fig. 1a, b, c lead to the same conclusions
retrieved at B � 10T . It is thus clear that the consideration of models with more than two bands will not lead to any significant
changes. In view of this, the other related results in the present work have been carried out by using the two-band model.

Also, the comparison with the results of Akbari et al. [37] and Shakouri et al. [38] seem to be irrelevant since in these two
references the study has been performed in the presence of both Rashba and Dresselhaus interactions with fixed ratios of their
coupling constants, unlike the present results which were focused on Rashba interactions. Besides, the geometry and the form of the
confinement potentials differ in these references than those considered in the present work. Moreover, we preferred not to compare
the results with those of Vaseghi et al. [25, 26] as the procedure they have applied seems, in our opinion, to be invalid.

In Fig. 2, we give the results obtained from Eq. (40) over the same range of magnetic field (10T ≤ B ≤ 30T ). The other
parameters are given in Eq. (56). In the absence of the Rashba effect, the two energies involved in Eq. (40) are Eo100 � Eo1, Eo111.
They have been determined from Eq. (16) and are presented in Fig. 2. The results obtained from Eq. (40) (E100, E111) after taking
the Rashba effect into account are also given in Fig. 2. At B � 10T , the Rashba effect on Eo100 and Eo111 is of the order of 2.539%
and −2.842%, respectively. The effect is of the same order over the whole range considered for B.

The variation of the lower energy levels with the strength of the Rashba coupling coefficient (α) is displayed in Figs. 3, and 4.
The coefficient α varies from 0.5 × 10−11 eVm to 10−10 eVm. The other parameters are taken as

F � 5 × 105 V/m, ωo � 1.5 × 1013 s−1, B � 10T . (58)

In Fig. 3, the four energies E1±)two band, E2±)two band which results from the two band model (Eq. 53) are depicted. We
preferred here to restrict ourselves to the results of the two band model and discard those of the one band model since
we are mainly interested in studying the effect of the coefficientα. Over the α range considered in Fig. 3 the energies
E1+)two band, E1−)two band, E2+)two band, E2−)two band vary by about 17.379,−23.896, 19.212,−15.798%, respectively. It is thus
clear that the strength of the Rashba coupling coefficient (α) has a great effect on the energies. The increase of α by a factor of 20
has led to a change of the lower energies by about±20%.

In Fig. 4, the results calculated from Eq. (40) have been exhibited. The variation of α from 0.5 × 10−11 to 10−10 eVm has caused
the solution E100 which has been branched from Eo100 to increase by about 11.43%. However, the maximum value of this solution
was found to be at α � 8 × 10−11 eVm. It has been raised by about 14.05% due to the increase of α. On the other hand, the solution
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Fig. 3 Variation of the energies
E1±)two band and E2±)two band
with the Rashba coupling
coefficient α.The energies have
been calculated from Eq. (53) with
the values of the other parameters
given by Eq. (58)

Fig. 4 Plot of the energies
E100, E111 against the Rashba
coupling coefficient α. The
parameters needed for the
calculations are given by Eq. (58)
and the energies have been
calculated from Eq. (40)

E111 which results due to Eo111 has continued to decrease as α increases from 0.5 × 10−11 to 10−10 eVm. It decreases by about
20.066%.

Finally, the variation of the lower energies due to the change of the electric field F , from 0 to 106V/m is displayed in Figs. 5, and
6. The other parameters have been taken as

α � 10−11 eVm , ωo � 1.5 × 1013 s−1, B � 10T . (59)

In Fig. 5, the four energies which result due to the use of the two band model (Eq. 53) have been given. Each of the energies
E1+)two band, E1−)two band, E2+)two band, E2−)two band decrease by about 5.8335 meV as F varies from 0 to 106 V/m. Thus the four
energies vary by −12.891,−13.467,−8.116,−8.429%, respectively, over the considered range of F .

The results derived from Eq. (40) are depicted in Fig. 6. The change of F from 0 to 106V/m has decreased the two roots inferred
from Eq. (40) by 5.8336 meV which is the same value noticed in Fig. 5. This is due to the fact that the energies calculated from
Eq. (16) in the absence of the Rashba effect decrease by this value if F varies from 0 to106V/m. The change ofEo1, Eo2 in Eq. (53)
and of Eo100, Eo111 in Eq. (40) lead, in turn, to the same change in the solutions of these two equations. Thus the two roots E100, E111

of Eq. (40) which have been branched from Eo1, Eo111 vary by about −12.854%,−7.903% over the range ofF .

123



Eur. Phys. J. Plus         (2022) 137:610 Page 11 of 12   610 

Fig. 5 Graph of the energies
E1±)two band, E2±)two band
against the electric fieldF . The
values of the parameters needed
for the calculations are given by
Eq. (59) and the energies have
been calculated from Eq. (53)

Fig. 6 Plot of the energies
E100, E111 against the electric
fieldF . The energies have been
calculated in the presence of the
Rashba effect using Eq. (40). The
parameters used in the
calculations are given by Eq. (59)

7 Conclusions

We have dealt satisfactorily with the Rashba effect in a spherical quantum dot subject to a parabolic confining potential and external
magnetic and electric fields. A new form of the wave function in the presence of the Rashba interactions has been introduced. It
has been expanded in terms of all eigenfunctions of the original Hamiltonian (Ĥo) unlike the one used in Ref. [25] that depended
only on one eigenfunction of Ĥo. The new form presents the exact eigenfunctions of the total Hamiltonian Ĥ in a more accurate
manner than that taken in Refs. [25, 26]. Besides, the use of an expansion gave the possibility to choose the coefficients included in
alternative ways. In this connection, we have utilized two forms of these coefficients. They have been taken to depend either on the
three quantum numbers involved or on the principal quantum number only. In the latter case, we have presented the one-band and
the two-band models.
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In all cases, the presence of the Rashba interactions has caused each energy level involved in the calculations to be splitted into
two energies. The variation of the resulting energy levels has been evaluated as a function of the applied magnetic and applied
electric fields and as a function of the strength of the Rashba coupling coefficient, at a fixed confining potential.
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