Skip to main content

Advertisement

Log in

Thermoelectric phenomena of the molecular structure of a Thiolated Arylethynylene with a 9,10-Dihydroanthracene (AH) core

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Thermoelectric properties of the Thiolated Arylethynylene with a 9,10-Dihydroanthracene core molecular system, which consists of a finite homogeneous chain of benzene rings connected to two semi-infinite contacts, are investigated. The study is based on the strong bonding approach to first neighbors, using semi-analytical methods of Green’s function techniques within a real space renormalization group scheme. The thermoelectric quantities like electrical conductance, thermal conductance, Seebeck coefficient, and figure of merit are determined in terms of molecule-to-electrode coupling, voltage bias as well as temperature. The obtained results show that such a molecular system can be utilized as an efficient energy converter from heat energy to usable electric energy. Our analysis can be extended to other simple and more complex molecular systems possessing loop sub-structures for designing thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  2. W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, J. Chem. Phys. 109, 2874 (1998)

    Article  ADS  Google Scholar 

  3. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  4. A.R. Pease, J.O. Jeppesen, J.F. Stoddart, Y. Luo, C.P. Collier, J.R. Heath, Acc. Chem. Res. 34, 433 (2001)

    Article  Google Scholar 

  5. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes, C.D. Frisbie, Adv. Mater. 15, 1881 (2003)

    Article  Google Scholar 

  6. T. Brandes, Phys. Rep. 408, 315 (2005)

    Article  ADS  Google Scholar 

  7. N.J. Tao, Nat. Nanotech. 1, 173 (2006)

    Article  ADS  Google Scholar 

  8. J.N. Pedersen, B. Lassen, A. Wacker, Phys. Rev. B 75, 235314 (2007)

    Article  ADS  Google Scholar 

  9. S.M. Lindsay, M.A. Ratner, Adv. Mater. 19, 23 (2007)

    Article  Google Scholar 

  10. F. Pauly, J.K. Viljas, J.C. Cuevas, G. Schön, Phys. Rev. B 77, 155312 (2008)

    Article  ADS  Google Scholar 

  11. D.Q. Andrews, R.P. Van Duyne, M.A. Ratner, Nano Lett. 8, 1120 (2008)

    Article  ADS  Google Scholar 

  12. Q. Bao, Z. Lu, J. Li, K.P. Loh, C.M. Li, J. Phys. Chem. C 113, 12530 (2009)

    Article  Google Scholar 

  13. J.H. Ojeda, M. Pacheco, P.A. Orellana, Nanotechnology 20, 434013 (2009)

    Article  ADS  Google Scholar 

  14. H. Kondo, J. Nara, H. Kino, T. Ohno, J. Phys. Condens. Matter 21, 064220 (2009)

    Article  ADS  Google Scholar 

  15. S.V. Aradhya, L. Venkataraman, Nat. Nanotech. 8, 399 (2013)

    Article  ADS  Google Scholar 

  16. J.H. Ojeda, P.A. Orellana, D. Laroze, J. Chem. Phys. 140, 104308 (2014)

    Article  ADS  Google Scholar 

  17. M.L. Perrin, R. Frisenda, M. Koole, J.S. Seldenthuis, J.A. Celis, H. Valkenier, J.C. Hummelen, N. Renaud, F.C. Grozema, J.M. Thijssen, D. Dulić, H.S.J. van der Zant, Nat. Nanotech. 9, 830 (2014)

    Article  ADS  Google Scholar 

  18. S. Parashar, P. Srivastavaa, M. Pattanaik, S. Kumar-Jain, Eur. Phys. J. B 87, 220 (2014)

    Article  ADS  Google Scholar 

  19. F.G. Medina, J.H. Ojeda, C.A. Duque, D. Laroze, Superlatt. Microstruct. 87, 89 (2015)

    Article  ADS  Google Scholar 

  20. M. Koole, J.M. Thijssen, H. Valkenier, J.C. Hummelen, H.S.J. Van der Zant, Nano Lett. 15, 5569 (2015)

    Article  ADS  Google Scholar 

  21. Z. Li et al., Chinese Phys. B 2(26), 098508 (2017)

    Article  ADS  Google Scholar 

  22. H. Oberhofer, K. Reuter, J. Blumberger, Chem. Rev. 117, 10319 (2017)

    Article  Google Scholar 

  23. S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, H. Sirringhaus, Nat. Mat. 19, 491 (2020)

    Article  Google Scholar 

  24. F. Evers, R. Korytár, S. Tewari, J.M. van Ruitenbeek, Rev. Mod. Phys. 92, 035001 (2020)

    Article  ADS  Google Scholar 

  25. X. Jiang, W. Liu, J. Zhao, J. Appl. Math. Phys. 9, 503 (2021)

    Article  Google Scholar 

  26. G.R. Berdiyorov, H. Hamoudi, J. Mater. Res. Technol. 12, 193 (2021)

    Article  Google Scholar 

  27. G.R. Berdiyorov, H. Hamoudi, J. Comput. Sci. 48, 101261 (2021)

    Article  MathSciNet  Google Scholar 

  28. V. Darugar, M. Vakili, S. Faramarz Tayyari, Optik 236, 1166475 (2021)

    Article  Google Scholar 

  29. D. Fracasso, H. Valkenier, J.C. Hummelen, G.C. Solomon, R.C. Chiechi, J. Am. Chem. Soc. 133, 9556 (2011)

    Article  Google Scholar 

  30. C. M, Guédon, H. Valkenier, T. Markussen, T. Markussen, K. S. Thygesen, J. C. Hummelen, and S. J. Van der Molen, Nat. Nanotech. 7, 305 (2012)

  31. C.J. Lambert, Chem. Soc. Rev. 44, 875 (2015)

    Article  Google Scholar 

  32. J.H. Ojeda, C.A. Duque, D. Laroze, Org. Electron. 41, 369 (2017)

    Article  Google Scholar 

  33. W.X. Su, X. Zuo, Z. Xie, G.P. Zhang, C.K. Wang, RSC Adv. 7, 14200 (2017)

    Article  ADS  Google Scholar 

  34. Y. Liu, L. Ornago, M. Carlotti, Y. Ai, M.E. Abbassi, S. Soni, A. Asyuda, M. Zharnikov, H.S.J. van der Zant, R.C. Chiechi, J. Phys. Chem. C 124, 22776 (2020)

    Article  Google Scholar 

  35. K.K. Saha, T. Markussen, K.S. Thygesen, B.K. Nikolic, Phys. Rev. B 84, 041412(R) (2011)

    Article  ADS  Google Scholar 

  36. M. Di Ventra, N.D. Lang, Appl. Phys. Lett. 76, 23 (2000)

    Article  Google Scholar 

  37. D.M. Cardamone, C.A. Stafford, S. Mazumdar, Nano Lett. 6, 2422 (2006)

    Article  ADS  Google Scholar 

  38. J.H. Ojeda, M. Pacheco, L. Rosales, P.A. Orellana, Org. Electron. 13, 1420 (2012)

    Article  Google Scholar 

  39. Y. Zhang, C.Y. Yam, G.H. Chen, J. Chem. Phys. 142, 164101 (2015)

    Article  ADS  Google Scholar 

  40. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  41. M. Di Ventra, Electrical Transport in Nanoscale Systems (University Press, Cambridge, 2008)

    Book  Google Scholar 

  42. Y.M. Blanter, M. Büttiker, Phys. Rep. 1, 336 (2000)

    Google Scholar 

  43. M. Timár, G. Barcza, F. Gebhard, L. Veis, Ö. Legezaa, Phys. Chem. 18, 18835 (2016)

    Google Scholar 

  44. A. Streitwieser, Molecular Orbital Theory for Organic Chemists (Wiley, New York, 1961)

    Google Scholar 

  45. A. Arnóbio de S. da Gama, J. Mol. Strut. 282, 1 (1993)

  46. H.M. Pastawski, L.F. Torres, E. Medina, Chem. Phys. 281, 257 (2002)

    Article  Google Scholar 

  47. J.H. Ojeda, R.R. Rey-González, D. Laroze, J. App. Phys. 114, 213702 (2013)

    Article  ADS  Google Scholar 

  48. J.H. Ojeda, C.A. Duque, D. Laroze, Phys. E 62, 15 (2014)

    Article  Google Scholar 

  49. E. Zerah-Harush, Y. Dubi, Phys. Rev. App. 3, 064017 (2015)

    Article  Google Scholar 

  50. N.A. Zimbovskaya, J. Phys. Condens. Matter 28, 183002 (2016)

    Article  ADS  Google Scholar 

  51. S. Ganguly, S.K. Maiti, J. Phys. D Appl. Phys. 54, 025301 (2021)

    Article  ADS  Google Scholar 

  52. S. Ganguly, S.K. Maiti, S. Sil, Carbon 172, 302 (2021)

    Article  Google Scholar 

  53. C.M. Finch, V.M. García-Suárez, C.J. Lambert, Phys. Rev. B 79, 033405 (2009)

    Article  ADS  Google Scholar 

  54. J.H.O. Silva, S.K. Maiti, Chem. Phys. Chem. 20, 3346 (2019)

    Article  Google Scholar 

  55. N.-X. Yang, Q. Yan, Q.-F. Sun, Phys. Rev. B 102, 245412 (2020)

    Article  ADS  Google Scholar 

  56. K. Walczak, Phys. Status Solidi B 241, 2555 (2004)

    Article  ADS  Google Scholar 

  57. U. Lundin, R.H. McKenzie, Phys. Rev. B 66, 075303 (2002)

    Article  ADS  Google Scholar 

  58. S.K. Maiti, Phys. Lett. A 366, 114 (2007)

    Article  ADS  Google Scholar 

  59. S.K. Maiti, Phys. Lett. A 373, 4470 (2009)

    Article  ADS  Google Scholar 

  60. M. Dey, S. K. Maiti, and S. N. karmakar, Org. Electron. 12, 1017 (2011)

  61. J.H.O. Silva, J.S.P. Barbosa, C.A.D. Echeverri, Molecules 25, 3215 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

JHOS acknowledges the financial support from Universidad Pedagógica y Tecnológica de Colombia. DL acknowledge partial financial support from FONDECYT 1180905 and from Centers of Excellence with BASAL/ANID financing Grant AFB180001, CEDENNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Helena Ojeda Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojeda Silva, J.H., Laroze, D. & Maiti, S.K. Thermoelectric phenomena of the molecular structure of a Thiolated Arylethynylene with a 9,10-Dihydroanthracene (AH) core. Eur. Phys. J. Plus 137, 553 (2022). https://doi.org/10.1140/epjp/s13360-022-02732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02732-5

Navigation