Skip to main content
Log in

Extending the applicability of the RVT technique for the randomized radioactive decay chain model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we improve the existing analysis on the randomized radioactive decay chain model based on Bateman master equations, by Hussein and Selim (2020). For a decay chain of three species of radionuclides, the authors derived the probability density function for the concentrations, by using the random variable transformation technique. We extend this application to the general solution of Bateman equations. The density function is expressed as an expectation, which has important implications for parametric density estimation. This may improve the classical kernel estimation when the random dimensionality is not low. Numerical examples are included, where the decay parameters and the initial concentrations are assigned different probability distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A. Hussein, M.M. Selim, Eur. Phys. J. Plus. 135(5), 418 (2020). https://doi.org/10.1140/epjp/s13360-020-00389-6

    Article  Google Scholar 

  2. T. Neckel, F. Rupp, Random Differential Equations in Scientific Computing, (Walter de Gruyter, 2013)

  3. R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, (SIAM, 2013)

  4. A. Hussein, M.M. Selim, Eur. Phys. J. Plus. 130(12), 249 (2015). https://doi.org/10.1140/epjp/i2015-15249-3

    Article  Google Scholar 

  5. F.A. Dorini, M.S. Cecconello, L.B. Dorini, Commun. Nonlinear Sci. Numer. Simulat. 33, 160–173 (2016). https://doi.org/10.1016/j.cnsns.2015.09.009

    Article  ADS  Google Scholar 

  6. H. Slama, N.A. El-Bedwhey, A. El-Depsy, M.M. Selim, Eur. Phys. J. Plus. 132(12), 505 (2017). https://doi.org/10.1140/epjp/i2017-11763-6

    Article  Google Scholar 

  7. J. Calatayud, J.C. Cortés, F.A. Dorini, Fluct. Noise Lett. 20(4), 2150038 (2021). https://doi.org/10.1142/S0219477521500383

    Article  ADS  Google Scholar 

  8. T.T. Soong, Random Differential Equations in Science and Engineering (Academic Press, New York, 1973)

    MATH  Google Scholar 

  9. W.J. Padgett, G. Schultz, C.P. Tsokos, SIAM, J. Appl. Math. 32(2), 467–483 (1977). https://doi.org/10.1137/0132039

    Article  Google Scholar 

  10. M. Ehrendorfer, Mon. Weather Rev. 122(4), 714–728 (1994)

    Article  ADS  Google Scholar 

  11. A. Halder, R. Bhattacharya, J. Guid. Control Dynam. 34(2), 459–474 (2011). https://doi.org/10.2514/1.51196

    Article  ADS  Google Scholar 

  12. J.-C. Cortés, M. Jornet, Math. Comput. Appl. 25(2), 33–41 (2020). https://doi.org/10.3390/mca25020033

    Article  Google Scholar 

  13. H. Bateman, Proc. Camb. Philos. Soc. 15, 423–427 (1910)

    Google Scholar 

  14. G. Casella, R.L. Berger, Statistical Inference, 2nd edn. (Duxbury Pacific Grove, CA, 2002)

    MATH  Google Scholar 

  15. Z. Botev, A. Ridder, Wiley StatsRef: Statistics Reference Online, pp. 1–6 (2017). https://doi.org/10.1002/9781118445112.stat07975

  16. B.W Silverman, Density Estimation for Statistics and Data Analysis, (Chapman and Hall, 1986)

  17. M. Jornet, J. Calatayud, O.P. Le Maître, J.-C. Cortés, J. Comput. Appl. Math. 374, 112770 (2020). https://doi.org/10.1016/j.cam.2020.112770

    Article  MathSciNet  Google Scholar 

  18. M. Jornet, J. Calatayud, O.P. Le Maître, J.-C. Cortés, Int. J. Uncertain. Quant. 10(5), 467–497 (2020). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020032659

    Article  Google Scholar 

  19. F. Udwadia, SIAM Rev. 31(1), 103–109 (1989). https://doi.org/10.1137/1031004

    Article  MathSciNet  Google Scholar 

  20. F.A. Dorini, R. Sampaio, J. Appl. Mech. 79(5), 051008–051014 (2012). https://doi.org/10.1115/1.4006453

    Article  Google Scholar 

  21. M. Jornet, Stoch. Anal. Appl. 39, 22–32 (2021). https://doi.org/10.1080/07362994.2020.1777163

    Article  MathSciNet  Google Scholar 

Download references

Funding

Marc Jornet has been supported by a postdoctoral contract from Universitat Jaume I, Spain (Acció 3.2 del Pla de Promoció de la Investigació de la Universitat Jaume I per a l’any 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Jornet.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Appendix

Appendix

We prove (2). Let \({\mathcal {C}}\) be a Borel set in \({\mathbb {R}}\). By definition of conditional law,

$$\begin{aligned} {\mathbb {P}}(Z_1A+Z_2\in {\mathcal {C}})= {}&\int _{{\mathbb {R}}^2}{\mathbb {P}}\left( Z_1A+Z_2\in {\mathcal {C}}|Z_1=z_1,Z_2=z_2\right) {\mathbb {P}}_{(Z_1,Z_2)}\left( \mathrm {d} z_1,\mathrm {d} z_2\right) \\ = {}&\int _{{\mathbb {R}}^2}{\mathbb {P}}\left( z_1A+z_2\in {\mathcal {C}}\right) {\mathbb {P}}_{(Z_1,Z_2)}\left( \mathrm {d} z_1,\mathrm {d} z_2\right) . \end{aligned}$$

Since A has a PDF,

$$\begin{aligned} {\mathbb {P}}\left( Z_1A+Z_2\in {\mathcal {C}}\right) ={}&\int _{{\mathbb {R}}^2}\int _{\left( {\mathcal {C}}-z_2\right) /z_1} f_A(a)\,\mathrm {d} a\,{\mathbb {P}}_{(Z_1,Z_2)}\left( \mathrm {d} z_1,\mathrm {d} z_2\right) \\ = {}&\int _{{\mathbb {R}}^2}\int _{{\mathcal {C}}} f_A\left( \frac{a-z_2}{z_1}\right) \frac{1}{|z_1|}\,\mathrm {d} a\,{\mathbb {P}}_{(Z_1,Z_2)}\left( \mathrm {d} z_1,\mathrm {d} z_2\right) . \end{aligned}$$

By Fubini’s Theorem (justified because the integrand is nonnegative) and the expression of the expectation,

$$\begin{aligned} {\mathbb {P}}\left( Z_1A+Z_2\in {\mathcal {C}}\right) = {}&\int _{{\mathcal {C}}}\int _{{\mathbb {R}}^2}f_A\left( \frac{a-z_2}{z_1}\right) \frac{1}{|z_1|}{\mathbb {P}}_{(Z_1,Z_2)}\left( \mathrm {d} z_1,\mathrm {d} z_2\right) \,\mathrm {d} a \\ = {}&\int _{{\mathcal {C}}} {\mathbb {E}}\left[ f_A\left( \frac{a-Z_2}{Z_1}\right) \frac{1}{|Z_1|}\right] \,\mathrm {d} a. \end{aligned}$$

This proves (2).

Though not used in the current paper, (2) may be generalized as follows. Let \(\pmb {A}\) be an absolutely continuous random vector of length m. Let \(\pmb {M}\) be an \(m\times m\) random matrix and \(\pmb {Z}\) be a random vector of length m. Suppose that \(\pmb {A}\) is independent of \((\pmb {M},\pmb {Z})\) and that \(\pmb {M}\) is invertible almost surely. Then, \(\pmb {M}\pmb {A}+\pmb {Z}\) is absolutely continuous, with PDF

$$\begin{aligned} f_{\pmb {M}\pmb {A}+\pmb {Z}}(\pmb {a})={\mathbb {E}}\left[ f_{\pmb {A}}\left( \pmb {M}^{-1} (\pmb {a}-\pmb {Z})\right) \frac{1}{|\det (\pmb {M})|}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calatayud, J., Jornet, M. Extending the applicability of the RVT technique for the randomized radioactive decay chain model. Eur. Phys. J. Plus 137, 405 (2022). https://doi.org/10.1140/epjp/s13360-022-02625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02625-7

Navigation