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Abstract We study the behaviour of Yukawa and Newtonian gravitational forces in a cubic box with fully periodic boundaries
commonly encountered in N-body simulations of the structure formation. Placing a single gravitating body at the origin of coordinates,
we reveal the scales at which non-negligible deviation from the Yukawa law occurs when the Newtonian approximation is employed.
We discuss the results in terms of the corresponding physical distances today as well as earlier, back at the matter-dominated stage.
Revisiting the problem for free boundaries, we also compare the periodic and plain gravitational forces for Yukawa-type interactions.

1 Introduction

Nonlinear dynamics governing structure formation at sub-horizon scales is often modelled using the Newtonian approximation in
cosmological simulations [1–3]. The absence of relativistic effects in the formulation is, however, a major drawback as they are an
essential part of cosmological processes, and not to be neglected particularly in the era of precision cosmology. This can be overcome
by employing the Yukawa gravitational potential instead of the Newtonian one in the equations of motion of the underlying N-body
codes. The sought-for contribution of general relativistic effects is inherent in the Yukawa potential as it follows directly from
the Einstein equations. The Yukawa-type interaction of gravitating bodies was initially introduced in [4] as the manifestation of
gravitation at all scales, namely, at both sub- and super-horizon distances. Later, the associated time-dependent cut-off distance
λ for the potential and force (i.e. the Yukawa interaction range, or the screening length) was revisited in [5] where it was used
(along with the cut-off scale from [6]) to define the effective screening length λeff which fully agrees with the sizes of the largest
cosmic structures observed today. At small scales, well below λeff , the Yukawa gravitational potential is reduced to its Newtonian
counterpart. However, at scales comparable to the screening length and beyond those, two laws of gravity deviate from one another
since unlike the Newtonian behaviour, the potential undergoes rapid exponential decay in the Yukawa formulation. In this connection,
it is interesting to study the discrepancy in terms of the force generated by a single particle in a cubic box, conventionally utilized in
N-body simulations. The results then can straightforwardly be translated into the physical setting to reveal the scales at which the
Newtonian approximation differs significantly from the Yukawa law.

Certainly, there are other types of alterations of the Newtonian potential in literature, especially in the context of modified gravity.
For example, the f (R) and Dvali–Gabadadze–Porrati braneworld models have been investigated with respect to large-scale structure
formation in [7–10] (see also references therein). In addition, it is sometimes argued that the Newtonian potential acquires quadratic
correction due to the cosmological constant (see recent reasoning in [11–13] and references therein).

In the present work, our primary focus is on the comparison of Yukawa and Newtonian forces for a single gravitating body in
a simulation box with three-dimensional periodic boundaries. We investigate how the behaviour of forces changes with increasing
distance from the source and how it depends on the screening length of Yukawa gravity, i.e. what happens when the screening length
is significantly smaller than, comparable to or larger than the box size. We then evaluate our results based on the corresponding
physical distances, provided that the box size today is set to 1.3 Gpc. Additionally, to see the impacts of periodicity on the force, we
extend the analysis to include the problem with free boundaries.

The outline of this paper is as follows. In Sect. 2, we present the formulas for the Yukawa and Newtonian potentials and forces,
both for free and periodic boundaries. The expressions for periodic boundaries are formulated via Ewald sums to ensure better
correspondence with the available N-body simulations. We compare the behaviour of forces for various values of the screening
length. In Sect. 3, we provide a more detailed analysis showing how far from the gravitating source the periodic Yukawa and
Newtonian as well as the periodic and plain Yukawa forces begin to significantly differ from one another. We analyse the results in
terms of the corresponding physical distances for a box size of 1.3 Gpc today. In concluding Sect. 4, we provide a brief summary.
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2 Potentials and forces

In the cosmological setting, the motivation for calculating the gravitational potential and force for periodic boundaries is twofold.
From the theoretical point of view, it is possible that the universe is not simply connected, contrary to what is suggested by
concordance cosmology, but multiply connected. Hence, as is a matter of investigation also in observational cosmology [14–16],
the space may have toroidal topology: it may be shaped as a cubic torus (T 3), the size of which is bounded from below by the
available data [17]. If this is the case, periodicity in three dimensions naturally requires that one should resort to fully periodic
boundary conditions to accurately describe gravity at the scales of interest [18]. Nonetheless, if not imposed on physical grounds,
i.e. when the study is based on concordance cosmology, periodic boundaries come into play in N-body codes for practical reasons.
In order to mimic the interactions in the infinite universe, simulations are generally run for cubic boxes replicated periodically in
three dimensions [1–3,19].

Cosmological N-body simulations based on the Newtonian approximation often employ the Ewald method so that the very slowly
converging series in the periodic force expression becomes numerically manageable [20,21]. Though the Yukawa force has good
convergence properties, especially for the small values of the interaction range in comparison to the box size [18], we employ the
Ewald summations for both laws to ensure consistency.

Below we present, respectively, the formulas for the rescaled Yukawa–Ewald gravitational potential and x-component of the
corresponding rescaled gravitational force in a cubic simulation box [18]. They are sourced by a single particle of mass m at
the origin of comoving Cartesian coordinates as well as its periodic images which are positioned at (x, y, z) = (k1l, k2l, k3l) ,
k1,2,3 = 0,±1,±2, ..., where l represents the cubic torus period:
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The rescaled quantities (with tildes) in the above expressions as well as throughout the paper follow from the definitions

x = x̃l, y = ỹl, z = z̃l, λeff = λ̃effal , (2.5)

where a is the scale factor. As regards the rescaled potential �̃, if we multiply it by −GNm/
(
c2al

)
(where GN is the Newtonian

gravitational constant and c is the speed of light), and then sum up such contributions from all N particles in the simulation box,
adding also the term (1/3)λ2

eff/λ
2, then we get the total scalar metric perturbation � [18].

In an identical setup, the rescaled Newton–Ewald potential and x-component of the gravitational force read [20,21]
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In both expressions 2.2 and 2.7, the free parameter α of the Ewald formulation is set to α = 2, according to [20,21], to achieve
good accuracy at fairly low computational cost. In principle, the results do not depend on the choice of α for a reasonable range of
values. Assigned an optimal value, it rather serves to facilitate rapid convergence of the series so that adequate precision may be
reached by including a small number of terms in the summation, which reduces computational effort.

Given the possibility that periodicity may not be demanded by topology, and hence the related effects in simulations may be
artificial [22], we find it worthwhile to study two laws of gravity also for free boundaries. Losing the lattice, we formulate the
solutions again for a single gravitating body, placed at (x, y, z) = (0, 0, 0). The rescaled Yukawa potential and x-component of the
gravitational force are then, respectively,
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whereas the rescaled Newtonian potential and x-component of the gravitational force are
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In Figs. 1a–2b, we simultaneously plot four force curves, according to 2.2, 2.7, 2.9 and 2.11, versus x̃ (in the case of fixed ỹ = z̃ = 0)
for λ̃eff = 0.05, 0.1, 1, 2, respectively. We aim to demonstrate how they behave with increasing distance from the gravitating body,
depending on the effective screening length λ̃eff , especially when periodic boundaries are imposed.

Looking first at Fig. 1a and b, one realizes that the curves corresponding to two different laws of gravity are visibly separated
from one another except in the immediate vicinity of the source placed at x̃ = 0, and near x̃ = 0.5, where the Yukawa–Ewald
and Newton–Ewald forces tend to zero. The Ewald summations of Yukawa and Newtonian forces do not deviate much from the
corresponding plain (Yukawa and Newtonian) forces themselves which, unlike the Ewald summations, do not involve the effects
of periodicity. Contrarily, in Fig. 2a and b, the plain Yukawa and Newtonian forces remain close to each other just like the curves
demonstrating the corresponding Ewald forces, and now these two sets are separated within the range of interest instead. The reason
for such an outcome is the following: for small λ̃eff , the difference in the forms of gravitational interaction for Yukawa and Newtonian
laws comes into play at rather small distances from the source due to the small range of the exponentially decaying Yukawa force,
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(a) (b)

Fig. 1 x-components of four rescaled gravitational forces F̃ ≡ ∂�̃/∂ x̃ on the line ỹ = z̃ = 0 when a λ̃eff = 0.05 and b λ̃eff = 0.1. The range of the x̃-axis
lies between 0.2λ̃eff and λ̃eff in the embedded plot and starts from λ̃eff in the larger plot to cover up to x̃ = 0.5

(a) (b)

Fig. 2 x-components of four rescaled gravitational forces F̃ ≡ ∂�̃/∂ x̃ on the line ỹ = z̃ = 0 when a λ̃eff = 1 and b λ̃eff = 2. The range of the x̃-axis lies
between a x̃ = 0.2λ̃eff and x̃ = 0.5, b x̃ = 0.1λ̃eff and x̃ = 0.5

characterized by nothing but the interaction range λ̃eff . The Ewald summation here does not significantly change the behaviour of
the plain Yukawa force, again, because of the smallness of the interaction range, which is well below the half-box size. For larger
λ̃eff , however, periodicity does make a difference and one sees that Ewald forces decrease rapidly to reach zero at x̃ = 0.5 in the
last two figures. Nevertheless, the Yukawa vs. Newtonian behaviour of gravity is no longer recognizable, as the interaction range is
equal to or larger than the box size in Fig. 2a and b, respectively.

3 Deviations from the plain Yukawa and Yukawa–Ewald forces

Elaborating further on our analysis in the previous section, we now zoom into the region in the box where deviations from the
Yukawa–Ewald and plain Yukawa forces become non-negligible. To begin with, we employ formulas 2.2 and 2.7 and plot the
relative error |(F̃YE − F̃NE)/F̃YE| (for ỹ = z̃ = 0) against x̃ , i.e. the distance from the source particle. In Fig. 3a, we show that
for λ̃eff = 0.05, the distinction among periodic forces grows very fast. A relative error as large as 10% takes place at x̃ ∼ 0.025,
and the 1% error is encountered at a distance smaller than 1% of the box size, that is at x̃ ∼ 0.0074. Since the difference between
Yukawa–Ewald and Newton–Ewald forces is sensitive to the screening length, when we fix λ̃eff = 0.1 in Fig. 3b, we observe the
1% and 10% errors at the points x̃ ∼ 0.015 and x̃ ∼ 0.05, respectively, that are shifted further from the previous two towards the
middle of the box edge. Owing to the larger cut-off scale of the Yukawa force here, two laws of gravity behave similarly throughout
a larger region surrounding the gravitating body; yet both computed distances are still significantly small relative to the box size, as
λ̃eff merely equals one-tenth of it.

Then, using formulas 2.2 and 2.9 (again, calculated for ỹ = z̃ = 0), we plot the relative error |(F̃YE − F̃Y)/F̃Y| versus x̃ in Fig. 4.
We consider two cases with λ̃eff = 1, 2 to study where in the box the plain Yukawa and Yukawa–Ewald forces begin to significantly
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(a) (b)

Fig. 3 Relative error for the x-components of Yukawa–Ewald and Newton–Ewald forces calculated along the line ỹ = z̃ = 0 when a λ̃eff = 0.05, b
λ̃eff = 0.1. The range of the x̃-axis lies between 0.1λ̃eff and λ̃eff in the embedded plot and starts from λ̃eff in the larger plot to cover up to x̃ = 0.3. From left
to right, red dots indicate the locations of the a 1% (x̃ = 0.00739), b 1% (x̃ = 0.0148) and a 10% (x̃ = 0.0251), b 10% (x̃ = 0.0504) errors, respectively

Fig. 4 Relative error for the
x-components of Yukawa–Ewald
and pure Yukawa forces calculated
along the line ỹ = z̃ = 0 when
λ̃eff = 1, 2. The range of the
x̃-axis lies between x̃ = 0.1 and
x̃ = 0.3

deviate from one another. This time, for both curves the 1% and 10% errors occur at x̃ ∼ 0.135 and x̃ ∼ 0.275, respectively, and we
see that locations of two fixed percent errors shift towards the point x̃ = 0.5 with increasing λ̃eff . As mentioned previously, periodic
boundaries result in deviations from the plain Yukawa force, especially when the cut-off distance exceeds the half-box size, because
at x̃ = 0.5 the Yukawa–Ewald force tends to zero regardless of the greater interaction range. For the same reason, deviations take
place closer to the centre of the edge rather than to the gravitating source.

It is worth noting at this point that as we consider a sample simulation box in the following steps, the range of interest for λ̃eff

will be 0.2 − 2, which corresponds to a period between redshifts z ≈ 119 and z ≈ 0 for our particular example.
In Fig. 5a, four distinct percent error values ranging from 0.001% to 1% for Ewald forces are displayed with respect to where

they are encountered in the simulation box for different λ̃eff . The physical size of the box is set to lph = (a/a0)(a0l) = 1.3 Gpc
today (z = 0), i.e. a0l = 1.3 Gpc. This approximately corresponds to λ̃eff = 2 on the horizontal axis via λeff = (a/a0)(a0l)λ̃eff ,
where λeff is determined from Eq. (41) of [5],

λeff =
√
c2a2H

3

∫
da

a3H3 , (3.12)

using the current values of the cosmological parameters relevant to the calculation of H , the Hubble parameter, as reported in [23].
The same relation indicates that the minimum value of λ̃eff on the plot (λ̃eff = 0.2) corresponds to the redshift z ≈ 119. The
physical distances at which the fixed percent errors are encountered at the present time approximately equal 530 (1%), 122 (0.1%),
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(a) (b)

Fig. 5 Locations of some fixed percent errors for the force components a F̃YE and F̃NE, b F̃YE and F̃Y calculated along the line ỹ = z̃ = 0 as functions
of λ̃eff . From top to bottom, the curves are limited to the intervals a x̃ : 0.0297–0.408 (1%), 0.00909–0.0938 (0.1%), 0.00284–0.0287 (0.01%), 0.000896–
0.00898 (0.001%), b x̃ : 0.222–0.133 (1%), 0.123–0.0628 (0.1%), 0.0611–0.0292 (0.01%), 0.0289–0.0136 (0.001%). The selected range of λ̃eff between
0.2 and 2 corresponds to the period from z ≈ 119 to z ≈ 0 for a simulation box of 1.3 Gpc today

(a) (b)

Fig. 6 Relative error for the x-components of a Yukawa–Ewald and Newton–Ewald, b Yukawa–Ewald and pure Yukawa forces calculated at points
x̃ = 0.001, 0.005, 0.01, 0.02 along the line ỹ = z̃ = 0 for the range 0.2 ≤ λ̃eff ≤ 2

37 (0.01%) and 12 (0.001%) Mpc. We see clearly in this figure that the distances of relative error points from the source are generally
much smaller than the box size. Fig. 5b demonstrates the same four fixed percent error curves in an identical setting, except now
for the relative error associated with the Yukawa–Ewald and plain Yukawa forces. Herein the respective physical distances at the
present time approximately equal 173 (1%), 82 (0.1%), 38 (0.01%) and 18 (0.001%) Mpc. Unlike the behaviour in the previous
figure, locations of percent errors shift towards the middle of the box edge as we move towards larger redshifts (smaller λ̃eff ).

As an alternative representation, in Fig. 6a and b we present, respectively, the relative error for the Yukawa–Ewald vs. Newton–
Ewald forces and Yukawa–Ewald vs. plain Yukawa forces for the range 0.2 ≤ λ̃eff ≤ 2 at certain fixed points in the box that
correspond to 1.3 (x̃ = 0.001), 6.5 (x̃ = 0.005), 13 (x̃ = 0.01) and 26 (x̃ = 0.02) Mpc distances from the gravitating source today.

4 Conclusion

In the present work, we have provided a thorough comparison of the Yukawa and Newtonian gravitational forces that are generated
by a particle in a cubic box with periodic boundaries. As is the conventional method in cosmological N-body simulations, we have
employed Ewald sums in expressing both periodic forces. We have additionally investigated how the Yukawa–Ewald force compares
to the plain Yukawa force of the free boundary problem to reveal the effects of periodicity for Yukawa-type interactions.

With a detailed analysis, we have shown that regarding the Yukawa–Ewald and Newton–Ewald forces, a relative error of
0.001% (10−5) already takes place at 12 Mpc from the gravitating source, followed by an error of 0.01% (10−4) at 37 Mpc
distance today, while λeff = 2.6 Gpc and lph = 1.3 Gpc. As for the plain Yukawa vs. Yukawa–Ewald forces, the corresponding
distances are revealed to be 18 and 38 Mpc, respectively. The measure of discrepancy between the plain Newtonian and periodic
Newton–Ewald forces has previously been studied in view of cosmological simulations [1,22], with a reported relative error of
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10−5 produced at distances as small as 1% of the box size [1]. Here we have shown that the error associated with different laws
of gravitation, i.e. the difference between the Yukawa–Ewald and Newton–Ewald forces is more significant since the 10−5 error
is already encountered at a point closer to the source than x = 0.01l. At earlier epochs, for smaller lph and λeff , the error points
are shifted towards the gravitating body. Therefore, in simulations that employ periodic Newtonian forces, non-negligible devia-
tions from the periodic Yukawa force are expected, especially throughout the matter-dominated epoch that is directly associated
with structure formation. Meanwhile, imposing periodic boundaries also results in deviations from the plain Yukawa force, but
the error associated with periodicity in Yukawa-type interactions is less significant (as it clearly follows from the comparison of
Fig. 6a and b).

Finally, we would like to comment on the larger percent errors (see, for instance, the orange curve in Fig. 5a) encountered with
increasing distance from the source. In our analysis, we have considered a single gravitating body and naturally, the gravitational
force due to this particle is decreasing with distance. Though the calculated error is growing significantly as we move further
away from the source, it is of no importance at large enough scales because had there been other gravitating bodies included in the
configuration, as is the case in the physical setting, the forces induced by neighbouring particles in that location would be much larger
than the force due to the original source and the latter would eventually become negligible. In this connection, the errors associated
with the single-particle case in this study are not to be considered relevant to the multi-particle configurations at significantly large
scales.
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