Skip to main content
Log in

Structural stability of electrical current in graphene-hexagonal boron nitride heterostructures: a quantum chaos approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The graphene-hexagonal boron nitride (G-hBN) plays a role of quantum dynamical systems under the influence of external fields. Quantum chaos theory concerning level repulsion can provide a clear picture of the influence of the structural factors such as impurity, number of atoms, and distance between the layers and environmental factors such as the external electric fields on the current-voltage variation. The association schemes theory in the perspective of the cycle graph is introduced to establish a relationship between the atoms in graphene and the hBN lattice. By using Bose–Mesner algebra, we have obtained an analytical method to study the conductivity in the G-hBN. We have recognized the insulator-metal transition in G-hBN by synchronously changing the Brody distribution from Poisson to Wigner distribution. We have considered the lattice with \(N_T(G/hBN)=50 \times 100\) atoms to study the impact of the impurity types on conductivity. Increasing the voltage in the G-hBN results in a negative differential resistance in the current-voltage diagram. We have observed that choosing the voltage from the NDR region results in the appearance of Wigner distribution in the level of energy spectrums. The Wigner distribution is essentially a measure for detecting the presence of quantum chaos. The study reports the threshold value of the transverse electric fields, and sufficiently (silicon/carbon) doping for generating the electrical current in the \(\mu \; A\) range. The obtained results indicate that carbon atoms, by low concentration, are acted better than silicon in this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselova, K. Geims, V. Morozovd, D. Jiangy, Y. Zhang, V. Dubonosi, V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. L. Likai, K. Jonghwan, J. Chenhao, Y.G. Jun, D.Y. Qiu, H. Felipe, Z. Shi, L. Chen, Z. Zhang, F. Yang et al., Nat. Nanotechnol. 12, 12–25 (2017)

    ADS  Google Scholar 

  3. K.K. Kang, L.H. Seok, L.Y. Hee, Chem. Soc. Rev. 47, 6342–6369 (2018)

    Article  Google Scholar 

  4. U. Teerayut, T. Takashi, W. Kenji, N. Kosuke, ACS Appl. Mater. Interfaces 10, 28780–28788 (2018)

    Article  Google Scholar 

  5. X. Luo, Z. Cheng, Z. Liu, L. Xu, X. Zhai, W. Wan, Y. Zhou, J. Phys. D Appl. Phys. 54(37), 375303 (2021)

    Article  Google Scholar 

  6. N.F. Yuan, L. Fu, Phys. Rev. B 87, 121401 (2018)

    Google Scholar 

  7. A.O. Sboychakov, A.L. Rakhmanov, A.V. Rozhkov, F. Nori, Phys. Rev. B 87, 121401 (2013)

    Article  ADS  Google Scholar 

  8. A. Allain, Zh. Han, V. Bouchiat, Nat. Mater. 11, 590 (2012)

    Article  ADS  Google Scholar 

  9. A. Mishchenko, Tu. Js, Y. Cao, R.V. Gorbachev, J.R. Wallbank, M.T. Greenaway, V.E. Morozov, S.V. Morozov, M.J. Zhu, S.L. Wong et al., Nat. Nanotechnol. 9, 808–813 (2014)

    Article  ADS  Google Scholar 

  10. D.J. Leech, J.J.P. Thompson, M. Mucha-Kruczyński, Phys. Rev. Appl. 10, 034014 (2018)

    Article  ADS  Google Scholar 

  11. D. Coello-Fiallos, T. Tene, J.L. Guayllas, D. Haro, A. Haro, C.V. Gomez, Materials Today: Proceedings 4, 6835–6841 (2017)

  12. J. Jung, A.H. MacDonald, Phys. Rev. B 89, 035405 (2014)

    Article  ADS  Google Scholar 

  13. A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, F. Nori, Phys. Rep. 648, 1–104 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Casati, Chaotic behavior in quantum systems: theory and applications (Springer, New York, 2012)

    Google Scholar 

  15. H. Stöckmann, Quantum chaos: an introduction, (American Association of Physics Teachers, 2000)

  16. Y. Liao, A. Vikram, V. Galitski, Phys. Rev. Lett. 125, 250601 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y.Y. Zhang, J. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 102, 106401 (2009)

    Article  ADS  Google Scholar 

  18. A. Rycerz, Phys. Rev. B 85, 245424 (2012)

    Article  ADS  Google Scholar 

  19. K.B. Efetov, Adv. Phys. 32, 53–127 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Behnia, F. Rahimi, Phys. Lett. A 382, 3274–3280 (2018)

    Article  ADS  Google Scholar 

  21. R. Bose, Pac. J. Math. 13, 389–419 (1963)

    Article  Google Scholar 

  22. RCh. Bose, D.M. Mesner, Annal. Math. Stat. 30, 21–38 (1959)

    Article  Google Scholar 

  23. J.L. Gross, J. Yellen, Handbook of graph theory (CRC Press, USA, 2004)

    MATH  Google Scholar 

  24. R.A. Bailey, Association schemes: designed experiments, algebra and combinatorics (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  25. M.A. Jafarizadeh, S. Behnia, E. Faizi, S. Ahadpour, Pramana 70, 417–438 (2008)

    Article  ADS  Google Scholar 

  26. E. Bannai, T. Ito, Algebraic combinatorics (Benjamin/Cummings Menlo Park, 1984)

  27. M.A. Jafarizadeh, R. Sufiani, S. Jafarizadeh, J. Math. Phys. 49, 073303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. J.E. Humphreys, Introduction to Lie algebras and representation theory (Springer, New York, 2012)

    Google Scholar 

  29. F. Joucken, Y. Tison, J. Lagoute, J. Dumont, D. Cabosart, B. Zheng, V. Repain, C. Chacon, Y. Girard, A.R. Botello-Méndez et al., Phys. Rev. B 85, 161408 (2012)

    Article  ADS  Google Scholar 

  30. J.-Ch. Charlier, X. Blase, S. Roche, Rev. Modern Phys. 79, 677 (2007)

    Article  ADS  Google Scholar 

  31. J. Jung, A.H. MacDonald, Phys. Rev. B 81, 195408 (2010)

    Article  ADS  Google Scholar 

  32. T. Van-Truong, Université Paris Saclay NNT : 2015SACLS133 (2015)

  33. F. Haake, Quantum signature of chaos (Springer, New York, 2009)

    Google Scholar 

  34. O. Bohigas, M.J. Giannoni, Ch. Schmit, Phys. Rev. Lett. 52, 1 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Behnia, F. Rahimi, J. Phys. Soc. Jpn. 87, 114602 (2018)

    Article  ADS  Google Scholar 

  36. C. Leon, M. Costa, L. Chico, A. Latgé, Scientific Rep. 9, 1–11 (2019)

    Article  ADS  Google Scholar 

  37. C. Maddi, F. Bourquard, V. Barnier, J. Avila, M.C. Asensio, T. Tite, F. Garrelie, Scientific Rep. 8, 1–13 (2018)

    Google Scholar 

  38. H. Kökten, S. Erkoç, Physica E Low-dimen Syst Nanostruct 44, 215–217 (2011)

    Article  ADS  Google Scholar 

  39. T.A. Brody, Lettere al Nuovo Cimento (1971-1985) 7, 482–484 (1973)

    Article  Google Scholar 

  40. F. Guinea, N.R. Walet, Phys. Rev. B 99, 205134 (2019)

    Article  ADS  Google Scholar 

  41. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    Article  ADS  Google Scholar 

  42. N.C. Murphy, R. Wortis, W.A. Atkinson, Phys. Rev. B 83, 184206 (2011)

    Article  ADS  Google Scholar 

  43. A.A. Elkamshishy, C.H. Greene, Phys. Rev. E 103, 062211 (2021)

    Article  ADS  Google Scholar 

  44. M. Yahyavi, B. Hetényi, B. Tanatar, Phys. Rev. B 100, 064202 (2019)

    Article  ADS  Google Scholar 

  45. S. Behnia, S. Fathizadeh, Phys. Rev. E 91, 022719 (2015)

    Article  ADS  Google Scholar 

  46. S. Awasthi, P.S. Gopinathan, A. Rajanikanth, C. Bansal, J. Sci. Adv. Mater. Dev. 3, 37–43 (2018)

    Google Scholar 

  47. M.T. Greenaway, E.E. Vdovin, D. Ghazaryan, A. Misra, A. Mishchenko, Y. Cao, Z. Wang, J.R. Wallbank, M. Holwill, Y.N. Khanin et al., Commun. Phys. 1, 1–7 (2018)

    Article  Google Scholar 

  48. W. Ortiz, N.J. Ramirez, D. Barrionuevo, M.K. Bhattarai, P. Feng, Nano Express 2, 010020 (2021)

    Article  ADS  Google Scholar 

  49. M.S. Azzaz, C. Tanougast, S. Sadoudi, R. Fellah, A.A. Dandache, Commun. Nonlinear Sci. Numer. Simul. 18, 1792–1804 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Wang, Ch.M. Li, Phys. Chem. Chem. Phys. 13, 1413–1418 (2011)

    Article  Google Scholar 

  51. X.K. Chen, J. Liu, Zh.H. Peng, D. Du, K.Q. Chen, Appl. Phys. Lett. 110, 0919107 (2017)

    Google Scholar 

  52. Y. Zhao, Z. Wan, U. Hetmanuik, M.P. Anantram, IEEE Electron Dev. Lett. 37, 1242–1245 (2016)

    Article  ADS  Google Scholar 

  53. P. Boriskov, A. Velichko, Electronics 8, 922 (2019)

    Article  Google Scholar 

  54. H. Ma, W. Wang, H. Xu, Zh. Wang, Y. Tao, P. Chen, W. Liu, X. Zhang, J. Ma, Y. Liu, ACS Appl. Mater. Interfaces 10, 21755–21763 (2018)

    Article  Google Scholar 

  55. O. Okikiola, M. Lyudmila, M. Rabi’atu, I. Emmanuel, B. Abdulhakee, FlatChem 24, 100194 (2020)

    Article  Google Scholar 

  56. S.K. Haldar, B. Chakrabarti, N.D. Chavda, T.K. Das, S. Canuto, V.K.B. Kota, Phys. Rev. A 89, 043607 (2014)

    Article  ADS  Google Scholar 

  57. S. Schierenberg, F. Bruckmann, T. Wettig, Phys. Rev. E 85, 061130 (2012)

    Article  ADS  Google Scholar 

  58. A.G. Magner, A.I. Levon, S.V. Radionov, Eur. Phys. J. A 54, 1–6 (2018)

    Article  Google Scholar 

  59. B. Batistić, C. Lozej, M. Robnik, Phys. Rev. E 100, 062208 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Behnia.

Ethics declarations

Data Availability Statement

All needed data are contained in the paper.

Funding

No funding was received to assist with the preparation of this manuscript.

Appendices

A Spectral fluctuations

The most direct manifestation of the level fluctuations in the study of short-range spectral correlations is the nearest-neighbor spacing distribution P(s), which measures local short-range correlations of eigenvalues [56]. It allows us to compare the statistical properties of different parts of the spectrum. The spacings \(s_{i}=E_{i+1}-E_{i}\) are determined from the unfolded spectrum. To obtain the unfolded level spacing distribution, rescaling the energies levels to get the unitary mean level density, we cut \(10\%\) of the energy in both ends of the spectrum. By fitting the level counting function with a seven-order polynomial, we can obtain the unfolded spectrum. After transforming all eigenvalues, their spectral density is uniform. A stable state with non-interacting levels exhibits Poissonian nearest-neighbor spacing distribution (NNSD) \((P(s)=e^{-s})\) with a peak at \(s = 0\) indicating level clustering [57]. Also, in the unstable mode, a system with linear level repulsion at \(s \rightarrow 0\) is described through the Wigner–Dyson NNSD \((P(s)=\frac{\pi }{2}se^{-\frac{\pi }{4}s^2})\) [58]. In some conditions, P(s) has an interesting behavior that is not completely Poisson nor Wigner. There are other distributions for characterizing such a behavior. The most popular are Brody distribution, where \(\beta \) is the “repulsion parameter” that characterizes the degree of repulsion of the energy levels [39].

$$\begin{aligned} P_{\beta }(s) = \alpha \left( \beta +1\right) s^{\beta } \exp \left( -\alpha s^{\beta +1}\right) , \end{aligned}$$
(A.1)

where \( \alpha = \left( \varGamma \left[ \dfrac{\beta +2}{\beta +1}\right] \right) ^{\beta +1}\), and \(\beta \) is the Brody parameter. In the limit of \(\beta =0\) the distribution is Poissonian (localized systems), and it is proportional to \(e^{-s}\). For delocalized systems (\(\beta =1\)) the distribution is well described by Wigner distribution, and it is proportional to \(e^{-\pi s^2/4}\) [59].

B Mean inverse participation ratio

Mean inverse participation ratio [35] is a measure for the degree of localization and is defined as:

$$\begin{aligned} MIPR(E_n)=\frac{1}{N}\sum _{i=1}^N|\psi _i^n|^4 \end{aligned}$$
(B.1)

where \(\Psi _i(x)\) is an eigenvector of Hamiltonian and correspond to the site i with energy \( E_n \). MIPR, as a phase transition indicator, helps to distinguish critical extended phases. It is an effective tool to distinguish the extended regions from localized states, where only a finite number of sites are occupied. It tends to be zero in thermodynamics limit, and \(\frac{1}{L}\) in the extended state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnia, S., Nemati, F. & Yagoubi-Notash, M. Structural stability of electrical current in graphene-hexagonal boron nitride heterostructures: a quantum chaos approach. Eur. Phys. J. Plus 137, 347 (2022). https://doi.org/10.1140/epjp/s13360-022-02559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02559-0

Navigation