Skip to main content

Advertisement

Log in

Modeling for freezing of PCM enhanced with nano-powders within a duct

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Addition of CuO powders in nano-sized with various shapes through pure PCM through the space among triangular and sinusoidal containers was analyzed in current study. The geometry was symmetric and half of container was analyzed in modeling to reduce number of elements. Two sides cold flow makes the solidification faster and solid front was presented in outputs. Single-phase formulation for NEPCM was applied and conductivity has been considered as function of shape of nanoparticles. The fraction of 0.02 and 0.04 was utilized for NEPCM and two shapes have been applied for nano-powders. Non-uniform grid was applied to produce finer grid near the solid front. Energy equations with source term of solidification were analyzed without involving the gravity effect and comparison with previous article showed nice agreement. Finite element method for modeling of this unsteady phenomenon has been implemented with considering implicit approach for unsteady terms. As shape coefficient changes from 3 to 5.7, the required time for full freezing declines about 5.97%. Also, dispersing nano-powders can decrease the needed time about 11.74%. Considering platelet copper oxide results in best case with lowest solidification time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This manuscript has no associated data.]

References

  1. T. Wang, A. Almarashi, Y.A. Al-Turki, N.H. Abu-Hamdeh, M.R. Hajizadeh, Y.M. Chu, Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.115052

    Article  Google Scholar 

  2. X. Liu, Y.P. Xu, H. Ayed, Y.A. Rothan, M.M. Selim, Modeling for solidification of paraffin equipped with nanoparticles utilizing fins. J. Energy Storage 45, 103763 (2022). https://doi.org/10.1016/j.est.2021.103763

    Article  Google Scholar 

  3. Y.M. Chu, N.H. Abu-Hamdeh, B. Ben-Beya, M.R. Hajizadeh, Z. Li, Q.V. Bach, Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liq. 320, 114457 (2020). https://doi.org/10.1016/j.molliq.2020.114457

    Article  Google Scholar 

  4. Y.-M. Chu, D. Yadav, A. Shafee, Z. Li, Q.V. Bach, Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liquids 319, 114121 (2020). https://doi.org/10.1016/j.molliq.2020.114121

    Article  Google Scholar 

  5. J. Wang, X. Yi-Peng, M. Raed Qahiti, M.A. Jafaryar, N.H. Alazwari, A.I. Abu-Hamdeh, M.M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Petroleum Sci. Eng. 208, 109734 (2022)

    Article  Google Scholar 

  6. M. Nazeer, F. Hussain, M. Ijaz Khan, A. Rehman, E.R. El-Zahar, Y.-M. Chu, M.Y. Malik, Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2021.126868

    Article  MATH  Google Scholar 

  7. Y.M. Chu, M.R. Hajizadeh, Z. Li, Q.V. Bach, Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 318, 114321 (2020). https://doi.org/10.1016/j.molliq.2020.114321

    Article  Google Scholar 

  8. M. Khodadadi, M. Sheikholeslami, Heat transfer efficiency and electrical performance evaluation of photovoltaic unit under influence of NEPCM. Int. J. Heat Mass Transfer 183, 122232 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122232

    Article  Google Scholar 

  9. Y.-M. Chu, B.M. Shankaralingappa, B.J. Gireesha, F. Alzahrani, M. Ijaz Khan, S.U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2021.126883

    Article  MATH  Google Scholar 

  10. F. Li, M. Jafaryar, M.R. Hajizadeh, Y.M. Chu, Melting process of nanoparticle enhanced PCM through storage cylinder incorporating fins. Powder Technol. 381, 551–560 (2021)

    Article  Google Scholar 

  11. T.-H. Zhao, M.I. Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7310

    Article  Google Scholar 

  12. Y.M. Chu, F. Salehi, M. Jafaryar, Q.V. Bach, Simulation based on FVM for influence of nanoparticles on flow inside a pipe enhanced with helical tapes. Nanosci. Appl. (2020). https://doi.org/10.1007/s13204-020-01583-9

    Article  Google Scholar 

  13. M. Sheikholeslami, S.A. Farshad, Investigation of solar collector system with turbulator considering hybrid nanoparticles. Renew. Energy 171, 1128–1158 (2021). https://doi.org/10.1016/j.renene.2021.02.137

    Article  Google Scholar 

  14. Y.P. Xu, P. Ouyang, S.M. Xing, L.Y. Qi, M. Khayatnezhad, H. Jafari, Optimal structure design of a PV/FC HRES using amended water strider algorithm. Energy Rep. 7, 2057–2067 (2021)

    Article  Google Scholar 

  15. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM. (2021) https://doi.org/10.1007/s13398-020-00992-3

  16. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A. Issakhov, Y.-M. Chu, Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116096

    Article  Google Scholar 

  17. H.-H. Chu, T.-H. Zhao, Y.-M. Chu, Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 70(5), 1097–1112 (2020). https://doi.org/10.1515/ms-2017-0417

    Article  MathSciNet  MATH  Google Scholar 

  18. Y.P. Xu, J.W. Tan, D.J. Zhu, P. Ouyang, B. Taheri, Model identification of the proton exchange membrane fuel cells by extreme learning machine and a developed version of arithmetic optimization algorithm. Energy Rep. 7, 2332–2342 (2021)

    Article  Google Scholar 

  19. T.-H. Zhao, Z.-Y. He, Y.-M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6), 6479–6495 (2020). https://doi.org/10.3934/math.2020418

    Article  MathSciNet  Google Scholar 

  20. M. Sheikholeslami, M. Jafaryar, A. Shafee, H. Babazadeh, Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J. Clean. Prod. 261, 121206 (2020)

    Article  Google Scholar 

  21. J. Li, W.H. Alawee, M.J. Rawa, H.A. Dhahad, Y.M. Chu, A. Issakhov, N.H. Abu-Hamdeh, M.R. Hajizadeh, Heat recovery application of nanomaterial with existence of turbulator. J. Mol. Liq. 326, 115268 (2021). https://doi.org/10.1016/j.molliq.2020.115268

    Article  Google Scholar 

  22. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 5(5), 4512–4528 (2020). https://doi.org/10.3934/math.2020290

    Article  MathSciNet  Google Scholar 

  23. T.-H. Zhao, M.-K. Wang, W. Zhang, Y.-M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. (2018). https://doi.org/10.1186/s13660-018-1848-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Y.-M. Chu, T.-H. Zhao, Concavity of the error function with respect to H"{o}lder means. Math. Inequal. Appl. 19(2), 589–595 (2016). https://doi.org/10.7153/mia-19-43

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  26. Y.-Q. Song, T.-H. Zhao, Y.-M. Chu, X.-H. Zhang, Optimal evaluation of a Toader-type mean by power mean. J. Inequal. Appl. (2015). https://doi.org/10.1186/s13660-015-0927-6

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Zhang, Z.J. Talabany, W. Hamali, A. Shafee, T.A. Nofal, A. Musa, Optimization of a biomass-driven Rankine cycle integrated with multi-effect desalination, and solid oxide electrolyzer for power, hydrogen, and freshwater production. Desalination 525, 115486 (2022). https://doi.org/10.1016/j.desal.2021.115486

    Article  Google Scholar 

  28. Y.-M. Chu, T.-H. Zhao, Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. (2015). https://doi.org/10.1186/s13660-015-0926-7

    Article  MathSciNet  MATH  Google Scholar 

  29. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A.M. Abusorrah, A. Issakhov, N.H. Abu-Hamdeh, A. Shafee, Y.-M. Chu, Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.115591

    Article  Google Scholar 

  30. Y.-M. Chu, H. Wang, T.-H. Zhao, Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means. J. Inequal. Appl. (2014). https://doi.org/10.1186/1029-242X-2014-299

    Article  MathSciNet  MATH  Google Scholar 

  31. X.-D. Luan, Xu. Yi-Peng, H. Ayed, M.M. Selim, Heat transfer treatment of nanomaterial with considering turbulator effects. Int. Commun. Heat Mass Transfer 131, 105787 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105787

    Article  Google Scholar 

  32. Y. Qin, Simulation of MHD impact on nanomaterial irreversibility and convective transportation through a chamber. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01941-1

    Article  Google Scholar 

  33. Y. Qin, Effect of inclusion of nanoparticles on unsteady heat transfer. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01960-y

    Article  Google Scholar 

  34. Y.-M. Chu, T.-H. Zhao, B.-Y. Liu, Optimal bounds for Neuman-S\’{a}ndor mean in terms of the convex combination of logarithmic and quadratic or contra-harmonic means. J. Math. Inequal. 8(2), 201–217 (2014). https://doi.org/10.7153/jmi-08-13

    Article  MathSciNet  MATH  Google Scholar 

  35. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  36. T.-H. Zhao, Y.-M. Chu, Y.-L. Jiang, Y.-M. Li, Best possible bounds for Neuman-S\’{a}ndor mean by the identric, quadratic and contraharmonic means. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/348326

    Article  MATH  Google Scholar 

  37. Yu. Zi-Xuan, M.-S. Li, Xu. Yi-Peng, S. Aslam, Y.-K. Li, Techno-economic planning and operation of the microgrid considering real-time pricing demand response program. Energies 14(15), 4597 (2021). https://doi.org/10.3390/en14154597

    Article  Google Scholar 

  38. T.-H. Zhao, Y.-M. Chu, B.-Y. Liu, Optimal bounds for Neuman-S\’{a}ndor mean in terms of the convex combinations of harmonic geometric quadratic and contraharmonic means. Abstr. Appl. Anal. (2012). https://doi.org/10.1155/2012/302635

    Article  MATH  Google Scholar 

  39. Y. Qin, Nanofluid heat transfer within a pipe equipped with external device. Int. Commun. Heat Mass Transfer 127, 105487 (2021)

    Article  Google Scholar 

  40. M.-K. Wang, M.-Y. Hong, Y.-F. Xu, Z.-H. Shen, Y.-M. Chu, Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 14(1), 1–21 (2020). https://doi.org/10.7153/jmi-2020-14-01

    Article  MathSciNet  MATH  Google Scholar 

  41. A.O. Elsayed, Numerical investigation on PCM melting in triangular cylinders. Alex. Eng. J. 57(4), 2819–2828 (2018)

    Article  Google Scholar 

  42. L.-L. Tian, X. Liu, S. Chen, Z.-G. Shen, Effect of fin material on PCM melting in a rectangular enclosure. Appl. Thermal Eng. 167, 114764 (2020)

    Article  Google Scholar 

  43. M.S. Mahdi, H.B. Mahood, J.M. Mahdi, A.A. Khadom, A.N. Campbell, Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube. Energy Convers. Manag. 203, 112238 (2020). https://doi.org/10.1016/j.enconman.2019.112238

    Article  Google Scholar 

  44. Y. Hong, W.-B. Ye, S.-M. Huang, J. Du, Can the melting behaviors of solid-liquid phase change be improved by inverting the partially thermal-active rectangular cavity? Int. J. Heat Mass Transf. 126, 571–578 (2018)

    Article  Google Scholar 

  45. Y. Xie, X. Meng, F. Wang, Y. Jiang, X. Ma, L. Wan, Y. Huang, Insight on corrosion behavior of friction stir welded AA2219/AA2195 joints in astronautical engineering. Corros. Sci. 192, 109800 (2021). https://doi.org/10.1016/j.corsci.2021.109800

    Article  Google Scholar 

  46. H. Sun, T.-H. Zhao, Y.-M. Chu, B.-Y. Liu, A note on the Neuman-S\’{a}ndor mean. J. Math. Inequal. 8(2), 287–297 (2014). https://doi.org/10.7153/jmi-08-20

    Article  MathSciNet  MATH  Google Scholar 

  47. H.-Z. Xu, W.-M. Qian, Y.-M. Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM, 116(1), Paper No. 21, 15 pages (2022). https://doi.org/10.1007/s13398-021-01162-9

  48. S. Yao, Xu. Yi-Peng, E. Ramezani, Optimal long-term prediction of Taiwan’s transport energy by convolutional neural network and wildebeest herd optimizer. Energy Rep. 7, 218–227 (2021)

    Article  Google Scholar 

  49. M. Sheikholeslami, R.-U. Haq, A. Shafee, Z. Li, Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transfer 130, 1322–1342 (2019)

    Article  Google Scholar 

  50. K. Karthikeyan, P. Karthikeyan, H.M. Baskonus, K. Venkatachalam, Y.-M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7954

    Article  Google Scholar 

  51. Y.-M. Chu, U. Nazir, M. Sohail, M.M. Selim, J.-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3), 119 (2021). https://doi.org/10.3390/fractalfract5030119

    Article  Google Scholar 

  52. H. Wu, F. Zhang, Z. Zhang, Droplet breakup and coalescence of an internal-mixing twin-fluid spray. Phys. Fluids (2021). https://doi.org/10.1063/5.0030777

    Article  Google Scholar 

  53. S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y.-M. Chu, Some further extensions considering discrete proportional fractional operators. Fractals 30(1), 2240026 (2022). https://doi.org/10.1142/S0218348X22400266

    Article  ADS  MATH  Google Scholar 

  54. Y.M. Chu, Z. Salahshoor, M.S. Shahraki, A. Shafee, Q.V. Bach, Annulus shape tank with convective flow in a porous zone with impose of MHD. Int. J. Modern Phys. C (2020). https://doi.org/10.1142/S0129183120501685

    Article  MathSciNet  Google Scholar 

  55. T.-H. Zhao, W.-M. Qian, Y.-M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 15(4), 1459–1472 (2021). https://doi.org/10.7153/jmi-2021-15-100

    Article  MathSciNet  MATH  Google Scholar 

  56. S.M. Shafee, K. Gnanasekaran, G. Ravikumar Solomon, P.S. Arshi Banu, Analysis of heat transfer mechanisms during energy storage in a vertical cylindrical unit filled with nano enhanced phase change material for free cooling applications, Materials Today: Proceedings 22 (2020) 743-750

  57. A. Acır, M. Emin-Canlı, Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM). Appl. Thermal Eng. 144, 1071–1080 (2018)

    Article  Google Scholar 

  58. S. Deng, C. Nie, H. Jiang, W.-B. Ye, Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage. Int. J. Heat Mass Transf. 130, 532–544 (2019)

    Article  Google Scholar 

  59. Y. Zhu, Y. Qin, S. Liang, K. Chen, C. Tian, J. Wang, X. Luo, L. Zhang, Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling. Appl. Energy 250, 98–108 (2019)

    Article  Google Scholar 

  60. R.P. Singh, S.C. Kaushik, D. Rakshit, Melting phenomenon in a finned thermal storage system with graphene nano-plates for medium temperature applications. Energy Convers. Manag. 163, 86–99 (2018)

    Article  Google Scholar 

  61. N. Wang, X.R. Zhang, D.S. Zhu, J.W. Gao, The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J. Therm. Anal. Calorim. 107(3), 949–954 (2012)

    Article  Google Scholar 

  62. M. Sheikholeslami, Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J. Taiwan Inst. Chem. Eng. 86, 25–41 (2018)

    Article  Google Scholar 

  63. K. Ismail, C. Alves, M. Modesto, Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl. Therm. Eng. 21, 53–77 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Ali Rothan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothan, Y.A. Modeling for freezing of PCM enhanced with nano-powders within a duct. Eur. Phys. J. Plus 137, 573 (2022). https://doi.org/10.1140/epjp/s13360-022-02505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02505-0

Navigation