Skip to main content
Log in

Converging shocks in van der Waals stiffened relaxing gases

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the collapse of converging shocks for radially symmetric flow of van der Waals stiffened relaxing gases using the Lie group invariance method. The distribution of flow variables in the medium just behind the shock for the cases of power law and exponential law shock paths is analyzed. The effects of relaxation parameters, ratio of vibrational specific heat to the specific gas constant, material-specific density, material-specific velocity and van der Waals excluded volume on the self-similar exponent and on the converging shocks are also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available within the article.

References

  1. G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelunktes bzw der Zylinderachse. Luftfahrtforschung 19, 302–312 (1942)

    MathSciNet  MATH  Google Scholar 

  2. G. Taylor, The air wave surrounding an expanding sphere. Proc. R. Soc. Lond. A 186, 273–292 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Taylor, The formation of a blast wave by a very intense explosion-II, The atomic explosion of 1945. Proc. R. Soc. Lond. A 201, 175–186 (1950)

    Article  ADS  Google Scholar 

  4. L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Mir Publishers, Moscow Russia, 1982)

    MATH  Google Scholar 

  5. M. Van Dyke, A. Guttmann, The converging shock wave from a spherical or cylindrical piston. J. Fluid Mech. 120, 451 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Arora, V.D. Sharma, Convergence of strong shock in a van der Waals gas. SIAM J. Appl. Math. 66, 1825–1837 (2006)

    Article  MathSciNet  Google Scholar 

  7. S.D. Ramsey, R.S. Baty, Piston driven converging shock waves in a stiffened gas. Phys. Fluids 31, 086106–086119 (2019)

    Article  ADS  Google Scholar 

  8. E. Modelevsky, R. Sari, Revisiting the strong shock problem: converging and diverging shocks in different geometries. Phys. Fluids 33, 056105 (2021)

    Article  ADS  Google Scholar 

  9. S. Shah, R. Singh, Propagation of non-planar weak and strong shocks in a non-ideal relaxing gas. Ricerche Mat (2019). https://doi.org/10.1007/s11587-019-00472-w

    Article  MATH  Google Scholar 

  10. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer, Berlin, 1974)

    Book  Google Scholar 

  11. L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York-London, 1982)

    MATH  Google Scholar 

  12. P.E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide (Cambridge University Press, London, 2000)

    Book  Google Scholar 

  13. N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations (Wiley, Chichester, 1999)

    MATH  Google Scholar 

  14. G.. W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer, New York, 1989)

    Book  Google Scholar 

  15. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 1993)

    Book  Google Scholar 

  16. J.D. Logan, J.D.J. Perez, Similarity solutions for reactive shock hydrodynamics. SIAM J. Appl. Math. 39, 512–527 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  17. T.R. Sekhar, V.D. Sharma, Similarity analysis of modified shallow water equations and evolution of weak waves. Commun. Non-linear Sci. Numer. Simul. 17, 630–636 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Singh, J. Jena, Interaction of an acceleration wave with a strong shock in reacting polytropic gases. Appl. Math. Comput. 225, 638–644 (2019)

    MathSciNet  MATH  Google Scholar 

  19. J. Jena, R. Singh, Existence of self-similar solutions in reacting gases. Shock Waves 24, 211–218 (2014)

    Article  ADS  Google Scholar 

  20. S. Shah, R. Singh, On imploding strong shocks in non-ideal reacting gases with dust particles. J. Math. Phys. 61, 033506 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Chadha, J. Jena, Impact of dust in the decay of blast waves produced by a nuclear explosion. Proc. R. Soc. Lond. A 476, 20200105 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  22. A. Chauhan, K. Sharma, R. Arora, Similarity solutions for the strong shock waves in magnetogasdynamics with the effect of monochromatic radiation. Eur. Phys. J. Plus 135, 743–759 (2020)

    Article  Google Scholar 

  23. N. Gupta, K. Sharma, R. Arora, Similarity solutions for cylindrical shock wave in self-gravitating non-ideal gas with axial magnetic field: Isothermal flow. Math. Methods Appl. Sci. 45, 1259–1275 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. V.D. Sharma, Ch. Radha, Similarity solutions for converging shocks in a relaxing gas. Int. J. Engg. Sci. 33, 535–553 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Arora, M.J. Siddiqui, V.P. Singh, Similarity method for imploding strong shocks in a non-ideal relaxing gas. Int. J. Non-Linear Mech. 57, 1–9 (2013)

    Article  ADS  Google Scholar 

  26. S. Chauhan, A. Chauhan, R. Arora, Similarity solutions of converging shock waves in an ideal relaxing gas with dust particles. Eur. Phys. J. Plus 135, 825–846 (2020)

    Article  Google Scholar 

  27. G.B. Whitham, Linear and Non-linear Waves (Wiley-Interscience, New York, 1974)

    MATH  Google Scholar 

  28. R. Singh, J. Jena, One dimensional steepening of waves in non-ideal relaxing gas. Int. J. Non-Linear Mech. 77, 158–161 (2015)

    Article  ADS  Google Scholar 

  29. R. Singh, J. Jena, Evolution of weak waves and central expansion waves in a non-ideal relaxing gas. Ain Shams Eng. J. 7, 409–413 (2016)

    Article  Google Scholar 

  30. S. Mittal, J. Jena, Interaction of a singular surface with a characteristic shock in a relaxing gas with dust particles. Zeitschrift fur Naturforschung A 75, 119–129 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research support from CSIR-UGC [(Ref. No. 1071/(CSIR-UGC NET DEC. 2017)] is gratefully acknowledged by the first author (BKC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, B.K., Singh, R. Converging shocks in van der Waals stiffened relaxing gases. Eur. Phys. J. Plus 137, 293 (2022). https://doi.org/10.1140/epjp/s13360-022-02499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02499-9

Navigation