Skip to main content
Log in

Three-dimensional turbulence effects on plankton dynamics behind an obstacle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study a predator–prey model of plankton dynamics in the two and three-dimensional wakes of turbulent flows behind a cylinder, focusing on the impact of the three-dimensional character of the carrying velocity field on population variance spectra and spatial distributions. By means of direct numerical simulations, we find that the qualitative behavior of the biological dynamics is mostly independent of the space dimensionality, which suggests that only the relation between the typical flow and biological timescales is crucial to observe persistent blooms. Similarly, in both cases, we find that the spectral properties of the planktonic populations are essentially indistinguishable from those of an inert tracer. The main difference arising from the comparison of the two- and three-dimensional configurations concerns the local spatial distribution of plankton density fields. Indeed, the three-dimensional turbulent dynamics tend to destroy the localized coherent structures characterizing the two-dimensional flow, in which the planktonic species are mostly concentrated, thus reducing the phytoplankton biomass in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. K. Mann, J. Lazier, Dynamics of marine ecosystems: biological-physical interactions in the oceans (Wiley, New York, 2005)

    Book  Google Scholar 

  2. E.R. Abraham, Nature 391, 577–580 (1998)

    Article  ADS  Google Scholar 

  3. K.L. Denman, A.E. Gargett, Annu. Rev. Fluid Mech. 27, 225–256 (1995)

    Article  ADS  Google Scholar 

  4. A.P. Martin, K.J. Richards, A. Bracco, A. Provenzale, Glob. Geochem. Cycles 16, 9-1–9 (2002)

    Google Scholar 

  5. A.P. Martin, Prog. Oceanog. 57, 125–174 (2003)

    Article  Google Scholar 

  6. C. López, Z. Neufeld, E. Hernández-García, P.H. Haynes, Phys. Chem. Earth B 26, 313–317 (2001)

    Article  Google Scholar 

  7. L. Goodman, A.R. Robinson, Proc. R. Soc. Lond. A 464, 555–572 (2008)

    ADS  Google Scholar 

  8. K. Guseva, U. Feudel, J.R. Soc, Interface 17, 20190889 (2020)

    Google Scholar 

  9. K.L. Denman, T. Platt, J. Mar. Res 34, 593–601 (1976)

    Google Scholar 

  10. R.C. Smith, X. Zhang, J. Michaelsen, J. Geophys. Res. 93, 10863–10882 (1988)

    Article  ADS  Google Scholar 

  11. M. Lévy, P. Klein, Proc. R. Soc. Lond. A 460, 1673–1687 (2004)

    Article  ADS  Google Scholar 

  12. P.J.S. Franks, Mar. Ecol. Prog. Ser. 294, 295–309 (2005)

    Article  ADS  Google Scholar 

  13. K.L. Denman, A. Okubo, T. Platt, Limnol. Oceanogr. 22, 1033–1038 (1977)

    Article  ADS  Google Scholar 

  14. T.M. Powell, A. Okubo, Philos. Trans. R. Soc. Lond. B 343, 11–18 (1994)

    Article  ADS  Google Scholar 

  15. J. Derot, F.G. Schmitt, V. Gentilhomme, S.B. Zongo, Cont. Shelf Res. 109, 210–221 (2015)

    Article  ADS  Google Scholar 

  16. W. Wu, E. Calzavarini, F.G. Schmitt, L. Wang, Phys. Rev. Fluids 5, 08468 (2020)

    Google Scholar 

  17. A. Jaccod, S. Berti, E. Calzavarini, S. Chibbaro, Phys. Rev. Fluids 6, 103802 103802 (2021)

    Article  Google Scholar 

  18. A. Alexakis, L. Biferale, Phys. Rep. 767, 1–101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Z. Toroczkai, G. Károlyi, Á. Péntek, T. Tél, C. Grebogi, Phys. Rev. Lett. 80, 500–503 (1998)

    Article  ADS  Google Scholar 

  20. Z. Neufeld, Phys. Rev. Lett. 87, 108301 (2001)

    Article  ADS  Google Scholar 

  21. Z. Neufeld, C. López, E. Hernández-García, O. Piro, Phys. Rev. E 66, 066208 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Z. Neufeld, P.H. Haynes, V. Garçon, J. Sudre, Geophys. Res. Lett. 29, 1534 (2002)

    Article  ADS  Google Scholar 

  23. E. Hernández-García, C. López, Ecol. Complex. 1, 253–259 (2004)

    Article  Google Scholar 

  24. M. Lévy, P. Klein, A.-M. Treguier, J. Mar. Res. 59, 535–565 (2001)

    Article  Google Scholar 

  25. M. Lévy, J. Geophys. Res. 108(C11), 3358 (2003)

    Article  ADS  Google Scholar 

  26. M. Lévy, P.J.S. Franks, K.S. Smith, Nat. Commun. 9, 4758 (2018)

    Article  ADS  Google Scholar 

  27. J.E. Truscott, J. Brindley, Bull. Math. Biol. 56, 981–998 (1994)

    Article  Google Scholar 

  28. G. Boffetta, R.E. Ecke, Annu. Rev. Fluid Mech. 44, 427–451 (2012)

    Article  ADS  Google Scholar 

  29. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    ADS  Google Scholar 

  30. A.N. Kolmogorov, Proc. R. Soc. Lond. A 343, 9–13 (1991)

    ADS  Google Scholar 

  31. U. Frisch, Turbulence the legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, UK, 1995)

    Book  Google Scholar 

  32. J. Jeong, F. Hussain, J. Fluid Mech. 285, 69–94 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Chua, D. Lisoski, A. Leonard, A. Roshko, ASME FED Intl Symp on Nonsteady Fluid Dynamics 92, 455–464 (1990)

  34. M.M. Zdravkovich, Flow Around Circular Cylinders (Oxford University Press, Oxford, 1997)

    MATH  Google Scholar 

  35. G.K. Batchelor, J. Fluid Mech. 5, 113–133 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Berti, D. Vergni, F. Visconti, A. Vulpiani, Phys. Rev. E 72, 036302 (2005)

    Article  ADS  Google Scholar 

  37. A.P. Martin, J. Plank. Res. 22, 597–602 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was granted access to the HPC resources [MESU] of the HPCaVe centre at UPMC-Sorbonne University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Jaccod.

Impact of the Schmidt number in the 2D case

Impact of the Schmidt number in the 2D case

Fig. 7
figure 7

Spatial spectra of phytoplankton density \(E_S(k)\) for the 2D simulations at \(Re = 2000\) and A \(Sc=1\), B Sc=100, normalized by \(E_S(k_d)\), with \(k_d\) the wavenumber associated with the obstacle diameter

Fig. 8
figure 8

Visualization of the phytoplankton density field at a given time for \(Re=2000\) and a \(Sc = 1\), b \(Sc=100\)

In order to assess the possible effect of the Schmidt number, \(Sc = \nu /D\), we report here on a comparison between the results from 2D simulations performed at \(Re = 2000\), and (A) \(Sc = 1\), or (B) \(Sc = 100\), focusing on scalar fluctuation spectra. To be consistent, in both these simulations the maximum resolution was chosen to be \(N=2^{12}\), in order to resolve all the scales down to the Batchelor one, \(\ell _B\). As shown in Fig. 7, for both (A) and (B), the wavenumber phytoplankton variance spectrum is compatible with the scaling \(\sim k^{-1}\), but in case (A) (i.e., for \(Sc=1\)) this behavior is detectable only over a decade, for wavenumbers close to, or smaller than, \(k_d\), before a rapid decay of the spectrum at larger wavenumbers. In case (B) (i.e., for \(Sc=100\)) the power-law range extends over about two decades, indicating higher variance at large k, i.e., small scales, than in (A). This is clearly an effect due to the value of Sc. Indeed, when \(Sc >1\), scalar fluctuations are not dissipated at the viscous dissipative scale but are transferred to smaller ones and finally dissipated at scale \(\ell _B = \ell _{\nu } Sc^{-1/2}<\ell _\nu \). Considering that for simulation (B) \(\ell _B \sim 0.1\ell _{\nu }\), this simple estimate explains the additional decade of scaling range present at \(Sc=100\).

The impact of the Schmidt number can be appraised also in physical space, by comparing visualizations of the phytoplankton density field in the two cases (Fig. 8). For this purpose, one can consider the estimate for the width of a plankton filament in a purely elongational flow. According to the model originally developed in [37], such width is \(\ell _f \sim \sqrt{D/s}\), where D is the diffusivity and s the strain rate. Note that this quantity does not depend on any biological parameters. In spite of the additional complexity of our flow and biological model, simulations (A) and (B) display a clear qualitative agreement with this estimate of \(\ell _f\). The reduction of Sc, corresponding to the increase of D, makes filaments considerably thicker, as it is apparent from the comparison of Figs. 8a and 8b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaccod, A., Berti, S., Calzavarini, E. et al. Three-dimensional turbulence effects on plankton dynamics behind an obstacle. Eur. Phys. J. Plus 137, 184 (2022). https://doi.org/10.1140/epjp/s13360-022-02396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02396-1

Navigation