Skip to main content
Log in

Modified Dirac delta function and modified dirac delta potential in the quantum mechanics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Some properties of q-delta distribution is discussed. The q-deformed Gauss distribution corresponding to the q-delta function is constructed. The q-delta potential problem in the quantum mechanics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.S. Chung, H. Hassanabadi, Int. J. Geom. Methods Modern Phys. 15, 1850123 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Hassanabadi, S. Sargolzaeipor, W.S. Chung, Phys. A 508, 740 (2018)

    Article  MathSciNet  Google Scholar 

  3. W.S. Chung, H. Hassanabadi, Phys. A 516, 496 (2019)

    Article  MathSciNet  Google Scholar 

  4. H. Sobhani, H. Hassanabadi, W.S. Chung, Euro. Phys. J. C 78, 106 (2018)

    Article  ADS  Google Scholar 

  5. S. Sargolzaeipor, H. Hassanabadi, W.S. Chung, Euro. Phys. J. Plus 133, 5 (2018)

    Article  Google Scholar 

  6. C. Beck, E.G.D. Cohen, Physica 322A, 267 (2003)

    Article  ADS  Google Scholar 

  7. A.G. Bashkirov, A.D. Sukhanov, J. Exp. Theor. Phys. 95, 440 (2002)

    Article  ADS  Google Scholar 

  8. C. Tsallis, A.M.C. Souza, Phys. Rev. E 67, 026106 (2003)

    Article  ADS  Google Scholar 

  9. C. Beck, E.G.D. Cohen, Phys. A 344, 393 (2004)

    Article  MathSciNet  Google Scholar 

  10. H. Touchette, C. Beck, Phys. Rev. E 71, 016131 (2005)

    Article  ADS  Google Scholar 

  11. C. Vignat, A. Plastino, A.R. Plastino, Nuovo Cimento B 120, 951 (2005)

    ADS  Google Scholar 

  12. T. Yamano, Prog. Theor. Phys. Suppl. 162, 87 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hassanabadi.

Appendix A

Appendix A

In this appendix we will show

$$\begin{aligned} \lim _{\sigma \rightarrow 0} \int _{-\infty }^{\infty } P_q(x:x_0, \sigma ) F(x) \mathrm{d}x = F(x_0) + \frac{q}{2} x_0^2 F''(x_0) \end{aligned}$$
(56)

Now let us consider the Taylor expansion of the function F(x) around \(x=x_0\) as

$$\begin{aligned} F(x) =\sum _{n=0}^{\infty } F_n (x-x_0)^n \end{aligned}$$
(57)

Then we have

$$\begin{aligned}&\lim _{\sigma \rightarrow 0} \int _{-\infty }^{\infty } \mathrm{d}x \frac{1}{\sqrt{ 2\pi \sigma ^2 }} e^{ -\frac{(x-x_0)^2}{2 \sigma ^2}} F(x) =\lim _{\sigma \rightarrow 0} \int _{-\infty }^{\infty } \mathrm{d}x \frac{1}{\sqrt{ 2\pi \sigma ^2 }} e^{ -\frac{(x-x_0)^2}{2 \sigma ^2}} \sum _{n=0}^{\infty } F_n x^n\nonumber \\&\quad =\lim _{\sigma \rightarrow 0} \frac{1}{\sqrt{ 2\pi \sigma ^2 }} \sum _{n=0}^{\infty } F_{2n} 2^{ n+1/2} \Gamma (n + 1/2) \sigma ^{2n+1}\nonumber \\&\quad = F_0 = F(x_0) \end{aligned}$$
(58)

and

$$\begin{aligned}&\lim _{\sigma \rightarrow 0} \int _{-\infty }^{\infty } \mathrm{d}x \frac{1}{\sqrt{ 2\pi \sigma ^2 }} \left( x \partial _x e^{ -\frac{(x-x_0)^2}{2 \sigma ^2}} \right) F(x) =- \lim _{\sigma \rightarrow 0} \int _{-\infty }^{\infty } \mathrm{d}x \frac{1}{\sigma ^2 \sqrt{ 2\pi \sigma ^2 }} x (x - x_0) e^{ -\frac{(x-x_0)^2}{2 \sigma ^2}} \sum _{n=0}^{\infty } F_n x^n\nonumber \\&\quad =- \lim _{\sigma \rightarrow 0} \frac{1}{\sigma ^2 \sqrt{ 2\pi \sigma ^2 }} \left( x_0 \sum _{n=0}^{\infty } F_{2n+1} 2^{n+3/2} \Gamma (n +3/2) \sigma ^{ 2n +3} + \sum _{n=0}^{\infty } F_{2n} 2^{n+3/2} \Gamma (n +3/2) \sigma ^{ 2n +3} \right) \nonumber \\&\quad = - x_0 F_1 - F_0 = -x_0 F'(x_0) - F(x_0) \end{aligned}$$
(59)

and

$$\begin{aligned}&\lim _{\sigma \rightarrow 0} \int _{-\infty }^{\infty } \mathrm{d}x \frac{1}{\sqrt{ 2\pi \sigma ^2 }} \left( x^2 \partial _x^2 e^{ -\frac{(x-x_0)^2}{2 \sigma ^2}} \right) F(x) = \lim _{\sigma \rightarrow 0} \int _{-\infty }^{\infty } \mathrm{d}x \frac{1}{ \sqrt{ 2\pi \sigma ^2 }} \left( - \frac{x^2}{\sigma ^2} + \frac{x^2 (x - x_0)^2}{\sigma ^4} \right) e^{ -\frac{(x-x_0)^2}{2 \sigma ^2}} \sum _{n=0}^{\infty } F_n x^n\nonumber \\&\quad = 2F_0 + 2 F_2 x_0^2 + 4 x_0 F_1= 2 F(x_0) + x_0^2 F''(x_0) + 4 x_0 F'(x_0), \end{aligned}$$
(60)

which completes proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, W.S., Hassanabadi, H. Modified Dirac delta function and modified dirac delta potential in the quantum mechanics. Eur. Phys. J. Plus 137, 151 (2022). https://doi.org/10.1140/epjp/s13360-022-02379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02379-2

Navigation