Skip to main content
Log in

Simulation of Gaussian electromagnetic wave interaction and its effect on the dynamics of metallic nanosphere (repulsion or even elasticity)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, using the classical electromagnetic theory, the average force and the torque (moment of force) acting on a metallic nanosphere are investigated in the presence of a laser beam with Gaussian profile. The metallic nanosphere is modeled as a plasma nanosphere. It is found that the laser beam can apply both effective force and effective force torque to the nanosphere, being useful for the optical manipulation in the destruction of cancerous tissues, and the delivery of drugs to them. For this purpose, a mathematical model is presented for scattering phenomenon of the Gaussian laser beam from a metallic sphere. The spatial distribution of electric field inside the sphere is calculated, thus achieving the force density function inserted on each volume element of the sphere. Variations of the torque and the average force exerted on the metallic sphere are presented in terms of basic parameters such as the effective cross section of the laser beam, the relative distance between the front mirror of laser structure and sphere center, the operating frequency of the laser beam, nanosphere density and the radius of nanosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(15), 288–290 (1986). https://doi.org/10.1364/OL.11.000288

    Article  ADS  Google Scholar 

  2. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970). https://doi.org/10.1103/PhysRevLett.24.156

    Article  ADS  Google Scholar 

  3. T. Čižmr, L.C.D. Romero, K. Dholakia, D.L. Andrews, Multiple optical trapping and binding: New routes to self-assembly. J. Phys. B At. Mol. Opt. Phys. 43(10), (2010). https://doi.org/10.1088/0953-4075/43/10/102001

    Article  Google Scholar 

  4. K. Dholakia, P. Zemánek, Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82(2), 1767–1791 (2010). https://doi.org/10.1103/RevModPhys.82.1767

    Article  ADS  Google Scholar 

  5. M.M. Burns, J.M. Fournier, J.A. Golovchenko, Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989). https://doi.org/10.1103/PhysRevLett.63.1233

    Article  ADS  Google Scholar 

  6. P.C. Chaumet, M. Nieto-Vesperinas, Optical binding of particles with or without the presence of a flat dielectric surface. Phys. Rev. B 64, 035422 (2001). https://doi.org/10.1103/PhysRevB.64.035422

    Article  ADS  Google Scholar 

  7. E. Almaas, I. Brevik, Possible sorting mechanism for microparticles in an evanescent field. Phys. Rev. A 87, 063826 (2013). https://doi.org/10.1103/PhysRevA.87.063826

    Article  ADS  Google Scholar 

  8. M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv et al., Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005). https://doi.org/10.1038/nbt1050

    Article  Google Scholar 

  9. M.C. Zhong, X.B. Wei, J.H. Zhou, Z.Q. Wang, Y.M. Li, Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4 (2013). https://doi.org/10.1038/ncomms2786

    Article  Google Scholar 

  10. M.L. Juan, M. Righini, R. Quidant, Plasmon nano-optical tweezers. Nat. Photonics 5, 349–356 (2011). https://doi.org/10.1038/nphoton.2011.56

    Article  ADS  Google Scholar 

  11. F.M. Fazal, S.M. Block, Optical tweezers study life under tension. Nat. Photonics 5, 318–321 (2011). https://doi.org/10.1038/nphoton.2011.100

    Article  ADS  Google Scholar 

  12. K.O. Greulich, Micromanipulation by Light in Biology and Medicine: The Laser Microbeam and Optical Tweezers (Springer, Berlin, 1999). https://doi.org/10.1007/978-1-4612-4110-2

    Book  Google Scholar 

  13. Y. Tan, D. Sun, J. Wang, W. Huang, Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010). https://doi.org/10.1109/TBME.2010.2042448

    Article  Google Scholar 

  14. I. Heller, G. Sitters, O.D. Broekmans, G. Farge, C. Menges, W. Wende, S.W. Hell, E.J.G. Peterman, G.J.L. Wuite, STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat. Methods 10, 910–916 (2013). https://doi.org/10.1117/12.2062819

    Article  Google Scholar 

  15. Y. Wu, D. Sun, W. Huang, Mechanical force characterization in manipulating live cells with optical tweezers. J. Biomech. 44(4), 741–746 (2011). https://doi.org/10.1016/j.jbiomech.2010.10.034

    Article  Google Scholar 

  16. S. Chu, J. Bjorkholm, A. Ashkin, A. Cable, Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314 (1986). https://doi.org/10.1103/PhysRevLett.57.314

    Article  ADS  Google Scholar 

  17. K. Svoboda, S.M. Block, Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). https://doi.org/10.1146/annurev.bb.23.060194.001335

    Article  Google Scholar 

  18. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, P. Ormos, Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys. Rev. Lett. 97(5), 058301 (2006). https://doi.org/10.1103/PhysRevLett.97.058301

    Article  ADS  Google Scholar 

  19. S.B. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: the elastic-response of individual double-stranded and single-stranded DNA molecules. Science 271(5250), 795–799 (1996). https://doi.org/10.1126/science.271.5250.795

    Article  ADS  Google Scholar 

  20. A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, M. Käll, Laser trapping of colloidal metal nanoparticles. ACS Nano 9(4), 3453–3469 (2015). https://doi.org/10.1021/acsnano.5b00286

    Article  Google Scholar 

  21. P.X. Wang, Q. Wei, P. Cai, J.X. Wang, Y.K. Ho, Neutral particles pushed or pulled by laser pulses. Opt. Lett. 41(2), 230–233 (2016). https://doi.org/10.1364/OL.41.000230

    Article  ADS  Google Scholar 

  22. M. Nieto-Vesperinas, J.J. Sáenz, R. Gómez-Medina, L. Chantada, Optical forces on small magnetodielectric particles. Opt. Express 18(11), 11428–11443 (2010). https://doi.org/10.1364/OE.18.011428

    Article  ADS  Google Scholar 

  23. J.P. Barton, D.R. Alexander, S.A. Schaub, Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 66(10), 4594–4602 (1989). https://doi.org/10.1063/1.343813

    Article  ADS  Google Scholar 

  24. G.X. Han, Y.P. Han, Radiation force on a sphere with an eccentric inclusion illuminated by a laser beam. Acta Phys. Sin. 58(9), 6167–6173 (2009). https://doi.org/10.7498/aps.58.6167

    Article  Google Scholar 

  25. Y.G. Du, Y.P. Han, G.X. Han, J.J. Li, Theoretical study on the rotation of particles driven by Gaussian beam. Acta Phys. Sin. 60(2), 028702 (2011). https://doi.org/10.7498/aps.60.028702

    Article  Google Scholar 

  26. Q.-C. Shang, Z.-S. Wu, T. Qu, Z.-J. Li, L. Bai, L. Gong, Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam. Opt. Express 21(7), 8677–8688 (2013). https://doi.org/10.1364/OE.21.008677

    Article  ADS  Google Scholar 

  27. A.A.A.R. Neves, Photonic nanojets in optical tweezers. J. Quant. Spectrosc. Radiat. Transfer 162, 122–132 (2015). https://doi.org/10.1016/j.jqsrt.2015.03.019

    Article  ADS  Google Scholar 

  28. Z. Li, Z. Wu, T. Qu, H. Li, L. Bai, L. Gong, Radiation torque exerted on a uniaxial anisotropic sphere: effects of various parameters. Opt. Laser Technol. 64, 269–277 (2014). https://doi.org/10.1016/j.optlastec.2014.05.026

    Article  ADS  Google Scholar 

  29. H.C. Yu, W.L. She, Radiation force exerted on a sphere by focused Laguerre–Gaussian beams. J. Opt. Soc. Am. A 32(1), 130–142 (2015). https://doi.org/10.1364/JOSAA.32.000130

    Article  ADS  Google Scholar 

  30. T. Qu, Z.S. Wu, Q.C. Shang, Z.J. Li, L. Bai, L. Gong, Analysis of the radiation force of a Laguerre–Gaussian vortex beam exerted on a uniaxial anisotropic sphere. J. Quant. Spectrosc. Radiat. Transf. 162, 103–113 (2015). https://doi.org/10.1016/j.jqsrt.2015.03.033 (special issue)

    Article  ADS  Google Scholar 

  31. L. Chvatal, O. Brzobohaty, P. Zemanek, Binding of a pair of Au nanoparticles in a wide Gaussian standing wave. Opt. Rev. 22(1), 157–161 (2015). https://doi.org/10.1007/s10043-015-0027-3

    Article  Google Scholar 

  32. N. du Preez-Wilkinson, A.B. Stilgoe, T. Alzaidi, H. Rubinsztein-Dunlop, T.A. Nieminen, Forces due to pulsed beams in optical tweezers: linear effects. Opt. Express 23(6), 7190–7208 (2015). https://doi.org/10.1364/oe.23.007190

    Article  ADS  Google Scholar 

  33. A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J.C. Loudet et al., Motion of optically heated spheres at the water-air interface. Langmuir 32(11), 2687–2697 (2016). https://doi.org/10.1021/acs.langmuir.6b00181

    Article  Google Scholar 

  34. A. Devi, A.K. De, Generalized Lorenz–Mie theory of optical Kerr effect in femtosecond laser trapping of dielectric nanoparticles. Int. Conf. Fiber Opt. Photonics OSA Tech. Digest. (2016). https://doi.org/10.1364/PHOTONICS.2016.Th4A.3

    Article  Google Scholar 

  35. C. Calba, L. Méès, C. Rozé, T. Girasole, Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments. J. Opt. Soc. Am. A 25, 1541–1550 (2008). https://doi.org/10.1364/JOSAA.25.001541

    Article  ADS  Google Scholar 

  36. G. Gouesbet, J.A. Lock, List of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus [Invited]. Appl Opt. 52(5), 897–916 (2013). https://doi.org/10.1364/AO.52.000897

    Article  ADS  Google Scholar 

  37. G.D. Fu, J.P. Zhao, Y.M. Sun, E.T. Kang, K.G. Neoh, Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline. Macromolecules 40(6), 2271–2275 (2007). https://doi.org/10.1021/ma0613988

    Article  ADS  Google Scholar 

  38. E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012). https://doi.org/10.1039/C1CS15237H

    Article  Google Scholar 

  39. A. Eftekhari, Nanostructured Conductive Polymers (Wiley, Hoboken, 2010). https://doi.org/10.1002/9780470661338

    Book  Google Scholar 

  40. E. Park, J. Kim, D.J. Chung, M. Park, H. Kim, J.H. Kim, Si/SiOx-conductive polymer core-shell nanospheres with an improved conducting path preservation for lithium-ion battery. ChemSusChem Chem. Sustain. Energy Mater. J. 9(19), 2754–2758 (2016). https://doi.org/10.1002/cssc.201600798

    Article  Google Scholar 

  41. L. Zhang, W. Du, A. Nautiyal, Z. Liu, X. Zhang, Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci. China Mater. 61(3), 303–352 (2018). https://doi.org/10.1007/s40843-017-9206-4

    Article  Google Scholar 

  42. Y.D. Han, S.M. Zhang, H.Y. Jing, J. Wei, F.H. Bu, L. Zhao, X.Q. Lv, L.Y. Xu, The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere−nanoplate hybrid ink at a low temperature of 100°C. Nanotechnology 29(13) (2018). https://doi.org/10.1088/1361-6528/aaaa31

    Article  Google Scholar 

  43. G.M. Neelgund, A. Oki, A facile method for the synthesis of polyaniline nanospheres and the effect of doping on their electrical conductivity. Polym. Int. 60(9), 1291–1295 (2011). https://doi.org/10.1002/pi.3068

    Article  Google Scholar 

  44. R. Maugi, P. Hauer, J. Bowen, E. Ashman, E. Hunsicker, M. Platt, A methodology for characterising nanoparticle size and shape using nanopores. Nanoscale 12(1), 262–270 (2020). https://doi.org/10.1039/C9NR09100A

    Article  Google Scholar 

  45. P. Colson, C. Henrist, R. Cloots, Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J. Nanomater. (2013). https://doi.org/10.1155/2013/948510

    Article  Google Scholar 

  46. K. Oikawa, H. Kim, N. Watanabe, M. Shigeno, Y. Shirakawabe, K. Yasuda, Measuring the sizes of nanospheres on a rough surface by using atomic force microscopy and a curvature–reconstruction method. Ultramicroscopy 107(10–11), 1061–1067 (2007). https://doi.org/10.1016/j.ultramic.2007.03.011

    Article  Google Scholar 

  47. S. Kasmi, J. Solard, I. Tijunelyte, A.P.A. Fischer, M. Lamy de la Chapelle, N. Lidgi-Guigui, Tunable multilayers of self-organized silica nanospheres by spin coating. J. Nanomater. 2018, 1–6 (2018). https://doi.org/10.1155/2018/6075610

    Article  Google Scholar 

  48. X. Wang, D. Cao, X. Tang, J. Yang, D. Jiang, M. Liu, N. He, Z. Wang, Coating carbon nanosphere with patchy gold for production of highly efficient photothermal agent. ACS Appl. Mater. Interfaces 8(30) (2016). https://doi.org/10.1021/acsami.6b05550

    Article  Google Scholar 

  49. K. Kalantar-zadeh, B. Fry, Nanotechnology-Enabled Sensors (Springer, Berlin, 2008). https://doi.org/10.1007/978-0-387-68023-1

    Book  Google Scholar 

  50. Z. Hajijamali-Arani, B. Jazi, S. Jahanbakht, Theoretical modeling of average force acted on nano plasma spheres in presence of radiation of long wavelength point source. Plasmonics 12, 1245–1255 (2017). https://doi.org/10.1007/s11468-016-0382-3

    Article  Google Scholar 

  51. D.H. Froula, S.H. Glenzer, N.C. Luhmann Jr., J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques, 2nd edn. (Elsevier Inc, Amsterdam, 2011). https://doi.org/10.1016/B978-0-12-374877-5.00002-6

    Book  Google Scholar 

  52. H.J. Eom, Electromagnetic Wave Theory for Boundary-Value Problems—An Advanced Course On Analytical Methods (Springer, Berlin, 2004). https://doi.org/10.1007/978-3-662-06943-1

    Book  MATH  Google Scholar 

  53. L. Tsang, J.A. Kong, K.H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, Hoboken, 2000). https://doi.org/10.1002/0471224286

    Book  Google Scholar 

  54. N.A. Kampanis, V.A. Dougalis, J.A. Ekaterinaris, Effective Computational Methods for Wave Propagation (Numerical Insights), 1st edn. (Chapman and Hall/CRC, Boca Raton, 2008). https://doi.org/10.1201/9781420010879

    Book  MATH  Google Scholar 

  55. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering: from Fundamentals to Applications (Wiley, Hoboken, 2017). https://doi.org/10.1002/9781119079699

    Book  Google Scholar 

  56. L.D. Landao, E.M. Lifshitz, Electrodynamics in Cantinuous Media (Pergamon Press, Oxford, 1960). https://doi.org/10.11316/butsuri1946.16.5.359

    Book  Google Scholar 

  57. A.A. Rukhadze, A.F. Alexandrov, L.S. Bogdankevich, Principles of Plasma Electrodynamics, 2nd edn. (Urss, Moscow, 2013). (ISBN 978-5-396-00482-5)

    Google Scholar 

  58. A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics. Linear Theory (Pergamon Press Ltd., Oxford, 1975). https://doi.org/10.1016/C2013-0-02586-8

    Book  Google Scholar 

  59. C. Baxter, R. Loudon, Radiation pressure and the photon momentum in dielectrics. J. Mod. Opt. 57(10), 830–842 (2010). https://doi.org/10.1080/09500340.2010.487948

    Article  ADS  MATH  Google Scholar 

  60. D.H. Bradshaw, Z. Shi, R.W. Boyd, P.W. Milonni, Electromagnetic momenta and forces in dispersive dielectric media. Opt. Commun. 283(5), 650–656 (2010). https://doi.org/10.1016/j.optcom.2009.10.056

    Article  ADS  Google Scholar 

  61. S.M. Barnett, Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett. 104, 070401 (2010). https://doi.org/10.1103/PhysRevLett.104.070401

    Article  ADS  Google Scholar 

  62. G. Gouesbet, G. Gréhan, Generalized Lorenz–Mie Theories (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-17194-9

    Book  MATH  Google Scholar 

  63. F.J. Duarte, Tunable Lasers Handbook (Academic Press Inc, Cambridge, 1995). https://doi.org/10.1016/B978-0-12-222695-3.X5000-4

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, F., Jazi, B. & Abdoli-Arani, A. Simulation of Gaussian electromagnetic wave interaction and its effect on the dynamics of metallic nanosphere (repulsion or even elasticity). Eur. Phys. J. Plus 137, 139 (2022). https://doi.org/10.1140/epjp/s13360-021-02324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02324-9

Navigation