Skip to main content
Log in

Temperature effects for \(e^-+e^+\rightarrow \mu ^-+\mu ^+\) scattering in very special relativity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The electron-positron scattering process is investigated in the context of very special relativity (VSR). This theory assumes that the true symmetry of nature is not the full Lorentz group, but some of its subgroups, such as the subgroups SIM(2) and HOM(2). In this context, the cross-section for electron-positron scattering at finite temperature is calculated. The effects of temperature are introduced using the Thermo Field Dynamics (TFD) formalism. Our result shows that the cross-section is changed due to both effects, the VSR contributions and temperature effects. An estimated value for the VSR parameter using experimental data available in the literature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. V.A. Kostelecky, S. Samuel, Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  2. R. Gambini, J. Pullin, Phys. Rev. D 59, 124021 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane, T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Jacobson, S. Liberati, D. Mattingly, Annals Phys. 321, 150 (2006)

    Article  ADS  Google Scholar 

  5. D. Colladay, V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997)

    Article  ADS  Google Scholar 

  6. D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  7. A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.G. Cohen, S.L. Glashow, A Lorentz-violating origin of neutrino mass?, arXiv:hep-ph/0605036

  9. A.G. Cohen, D.Z. Freedman, J. High Energy Phys. 07, 039 (2007)

    Article  ADS  Google Scholar 

  10. J. Vohanka, Phys. Rev. D 85, 105009 (2012)

    Article  ADS  Google Scholar 

  11. M.M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 101, 261601 (2008)

    Article  ADS  Google Scholar 

  12. S. Das, S. Ghosh, S. Mignemi, Phys. Lett. A 375, 3237 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Alfaro, V.O. Rivellis, Phys. Rev. D 88, 085023 (2013)

    Article  ADS  Google Scholar 

  14. R. Bufalo, Phys. Lett. B 757, 216 (2016)

    Article  ADS  Google Scholar 

  15. R. Bufalo, M. Ghasemkhani, Phys. Rev. D 100, 065024 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Alfaro, A. Soto, Phys. Rev. D 100, 055029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Alfaro, Phys. Lett. B 772, 100 (2017)

    Article  ADS  Google Scholar 

  18. R. Bufalo, T. Cardoso e Bufalo, Phys. Rev. D 100(12), 125017 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Bufalo, M. Ghasemkhani, Z. Haghgouyan, A. Soto, Eur. Phys. J. C 80, 1129 (2020)

    Article  ADS  Google Scholar 

  20. A.F. Santos, Faqir C. Khanna, Eur. Phys. J. C 80, 703 (2020)

    Article  ADS  Google Scholar 

  21. J. Alfaro, Phys. Rev. D 103, 075011 (2021)

    Article  ADS  Google Scholar 

  22. N. Dimakis, Phys. Rev. D 103, 071701 (2021)

    Article  ADS  Google Scholar 

  23. T. Matsubara, Prog. Theor. Phys. 14, 351 (1955)

    Article  ADS  Google Scholar 

  24. J. Schwinger, J. Math. Phys. 2, 407 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Schwinger, Lecture Notes of Brandeis University Summer Institute (1960)

  26. Y. Takahashi, H. Umezawa, Coll. Phenomena 2, 55 (1975)

    Google Scholar 

  27. Y. Takahashi, H. Umezawa, Int. Jour. Mod. Phys. B 10, 1755 (1996)

    Article  ADS  Google Scholar 

  28. Y. Takahashi, H. Umezawa, H. Matsumoto, Thermofield Dynamics and Condensed States (North Holland, Amsterdan, 1982)

    Google Scholar 

  29. H. Umezawa, Advanced Field Theory: Micro (Macro and Thermal Physics, AIP, New York, 1993)

    Google Scholar 

  30. A.E. Santana, F.C. Khanna, Phys. Lett. A 203, 68 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  31. A.E. Santana, F.C. Khanna, H. Chu, C. Chang, Ann. Phys. 249, 481 (1996)

    Article  ADS  Google Scholar 

  32. F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malboiusson, A.E. Santana, Themal quantum field theory: Algebraic aspects and applications (World Scientific, Singapore, 2009)

    Google Scholar 

  33. S. Cheon, C. Lee, S.J. Lee, Phys. Lett. B 679, 73 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Alfaro, V.O. Rivelles, Phys. Rev. D 88, 085023 (2013)

    Article  ADS  Google Scholar 

  35. A. Dunn, T. Mehen, Implications of \(SU(2)_L \times U(1)\) Symmetry for \(SIM(2)\) Invariant Neutrino Masses, arXiv:hep-ph/0610202

  36. J. Alfaro, P. Gonzalez, R. Avila, Phys. Rev. D 91, 105007 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Alfaro, P. Gonzalez, R. Avila, Phys. Rev. D 91, 129904 (2015)

    Article  ADS  Google Scholar 

  38. A.F. Santos, F.C. Khanna, Int. J. Mod. Phys. A 31, 1650122 (2016)

    Article  ADS  Google Scholar 

  39. M. Derrick et al., Phys. Rev. D 31, 2352 (1985)

    Article  ADS  Google Scholar 

  40. M. Tanabashi et al., Particle data group. Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work by A. F. S. is supported by National Council for Scientific and Technological Development - CNPq projects 430194/2018-8 and 313400/2020-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.F., Khanna, F.C. Temperature effects for \(e^-+e^+\rightarrow \mu ^-+\mu ^+\) scattering in very special relativity. Eur. Phys. J. Plus 137, 101 (2022). https://doi.org/10.1140/epjp/s13360-021-02312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02312-z

Navigation