Skip to main content
Log in

Studies of dynamical behaviours of an imprecise predator-prey model with Holling type II functional response under interval uncertainty

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Our goal in this paper is to examine an imprecise predator-prey model in an interval environment. The present imprecise model is constructed, in part, by modifications to the Lotka–Volterra model with appropriate biology parameters taken as intervals. The Holling type II functional response is considered instead of the Holling Type I functional response, along with the predators’ interaction with themselves. Using a linear parametric representation of the interval, we can represent the imprecise model in a parametric form precisely. Next, we analyse the mathematical properties of the proposed model, like finding equilibrium with various stability conditions and investigating several bifurcations of the system. The justifications of all analytical results for our system are illustrated numerically with the interval-valued data of parameters, and the simulated results are express graphically. Finally, we conclude our work with suggestions and analyse the biological significance of our findings through numerical evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Hussein, Predator-prey modeling. Undergraduate J. Math. Model. One + Two. 31, 32 (2010)

    Google Scholar 

  2. B.M. Pierce, Predator-prey dynamics between mountain lions and mule deer: effects on distribution, population regulation, habitat selection, and prey selection (Doctoral dissertation) (2019)

  3. M.R. Heithaus, Predator-prey and competitive interactions between sharks (order Selachii) and dolphins (suborder Odontoceti): a review. J. Zool. 253(1), 53–68 (2001)

    Article  Google Scholar 

  4. A.J. Lotka, Elements Physical Biology (Williams and Wilkins, Baltimore, 1924)

    MATH  Google Scholar 

  5. B. Liu, Z. Teng, L. Chen, Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy. J. Comput. Appl. Math. 193(1), 347–362 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Lu, L. Zhang, Permanence and global attractivity of a discrete semi-ratio dependent predator-prey system with Holling II type functional response. J. Appl. Math. Comput. 33(1), 125–135 (2010)

    Article  MathSciNet  Google Scholar 

  7. P. Majumdar, S. Debnath, S. Sarkar, U. Ghosh, The Complex Dynamical Behavior of a Prey-Predator Model with Holling Type-III Functional Response and Non-Linear Predator Harvesting. International Journal of Modelling and Simulation. 1–18 (2021)

  8. N. Sk, P.K. Tiwari, S. Pal, A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation. Math. Comput. Simul. 192, 136–166 (2021)

    Article  MathSciNet  Google Scholar 

  9. K. Vishwakarma, M. Sen, Influence of Allee effect in prey and hunting cooperation in predator with Holling type-III functional response. J. Appl. Math. Comput. 1–21 (2021)

  10. U. Ghosh, S. Sarkar, B. Mondal, Study of stability and bifurcation of three species food chain model with non-monotone functional response. Int. J. Appl. Comput. Math. 7, 63 (2021)

    Article  MathSciNet  Google Scholar 

  11. P. Panja, Prey-predator-scavenger model with Monod-Haldane type functional response. Rendiconti del Circolo Matematico di Palermo Series 2 69(3), 1205–1219 (2020)

    Article  MathSciNet  Google Scholar 

  12. S. Liu, E. Beretta, A stage-structured predator-prey model of Beddington-DeAngelis type. SIAM J. Appl. Math. 66(4), 1101–1129 (2006)

    Article  MathSciNet  Google Scholar 

  13. E. Beretta, Y. Kuang, Global analysis in some delayed ratio-dependent predator-prey systems. Nonlinear Anal. Theor. Methods Appl. 32(3), 381–408 (1998)

    Article  Google Scholar 

  14. C.S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs Entomol. Soc. Canada. 97, 5–60 (1965)

    Article  Google Scholar 

  15. J.B. Collings, The effects of the functinal response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol. 36, 149–168 (1997)

    Article  MathSciNet  Google Scholar 

  16. J.S. Tener, Muskoxen (Queens Printer, Biotechnol Bioeng. Ottawa, 1995)

  17. J.F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10(6), 707–723 (1968)

    Article  Google Scholar 

  18. D. Sadhukhan, Prey-Predator Model with General Holling Type Response Function and Optimal Harvesting Policy. Int. J. Math. Trends Technol. 53(3) (2018)

  19. S. Tudu, N. Mondal, S. Alam, Dynamics of the Logistic Prey Predator Model in Crisp and Fuzzy Environment. In International workshop of Mathematical Analysis and Applications in Modeling. 511–523 (2018)

  20. T. Zhang, W. Ma, X. Meng, T. Zhang, Periodic solution of a prey-predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)

    MathSciNet  MATH  Google Scholar 

  21. X.Y. Meng, Y.Q. Wu, Dynamical analysis of a fuzzy phytoplankton-zooplankton model with refuge, fishery protection and harvesting. J. Appl. Math. Comput. 63(1), 361–389 (2020)

    Article  MathSciNet  Google Scholar 

  22. S. Priyadharsini, Analysis on stability of fuzzy fractional delayed predator prey system. J. Fract. Calculus Appl. 11(1), 151–160 (2020)

    MathSciNet  Google Scholar 

  23. S. Salahshour, A. Ahmadian, A. Mahata, S.P. Mondal, S. Alam, The behavior of logistic equation with alley effect in fuzzy environment: fuzzy differential equation approach. Int. J. Appl. Comput. Math. 4(2), 62 (2018)

    Article  MathSciNet  Google Scholar 

  24. D. Pal, G.S. Mahapatra, G.P. Samanta, Stability and bionomic analysis of fuzzy prey-predator harvesting model in presence of toxicity: a dynamic approach. Bull. Math. Biol. 78(7), 1493–1519 (2016)

    Article  MathSciNet  Google Scholar 

  25. R. Rudnicki, Long-time behaviour of a stochastic prey-predator model. Stochast. Process. Appl. 108(1), 93–107 (2003)

    Article  MathSciNet  Google Scholar 

  26. M. Liu, M. Fan, Permanence of stochastic Lotka-Volterra systems. J. Nonlinear Sci. 27(2), 425–452 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Maiti, P. Sen, G.P. Samanta, Deterministic and stochastic analysis of a prey-predator model with herd behaviour in both. Syst. Sci Control Eng. 4(1), 259–269 (2016)

    Article  Google Scholar 

  28. A. Das, M. Pal, Theoretical analysis of an imprecise predator-prey model with harvesting and optimal control. J. Opt. (2019)

  29. B. Dubey, S. Agarwal, A. Kumar, Optimal harvesting policy of a prey-predator model with Crowley-Martin-type functional response and stage structure in the predator. Nonlinear Anal. Modell. Control. 23(4), 493–514 (2018)

    Article  MathSciNet  Google Scholar 

  30. X. Zou, Y. Zheng, L. Zhang, J. Lv, Survivability and stochastic bifurcations for a stochastic Holling type II predator-prey model. Commun. Nonlinear Sci. Numeric. Simul. 83, 105136 (2020)

    Article  MathSciNet  Google Scholar 

  31. S. Kundu, S. Maitra, Asymptotic behaviors of a two prey one predator model with cooperation among the prey species in a stochastic environment. J. Appl. Math. Comput. 61(1), 505–531 (2019)

    Article  MathSciNet  Google Scholar 

  32. J. Danane, Stochastic predator-prey Lévy jump model with Crowley-Martin functional response and stage structure. J. Appl. Math. Comput. 1–27 (2021)

  33. R.K. Upadhyay, R.D. Parshad, K. Antwi-Fordjour, E. Quansah, S. Kumari, Global dynamics of stochastic predator-prey model with mutual interference and prey defense. J. Appl. Math. Comput. 60(1), 169–190 (2019)

    Article  MathSciNet  Google Scholar 

  34. D. Pal, G.S. Mahapatra, G.P. Samanta, Bifurcation analysis of predator-prey model with time delay and harvesting efforts using interval parameter. Int. J. Dynam. Control. 3(3), 199–209 (2015)

    Article  MathSciNet  Google Scholar 

  35. D. Pal, G.S. Mahaptra, G.P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241(2), 181–187 (2013)

    Article  MathSciNet  Google Scholar 

  36. D. Pal, G.S. Mahapatra, A bioeconomic modeling of two-prey and one-predator fishery model with optimal harvesting policy through hybridization approach. Appl. Math. Comput. 242, 748–763 (2014)

    MathSciNet  MATH  Google Scholar 

  37. A. Mahata, S.P. Mondal, B. Roy, S. Alam, M. Salimi, A. Ahmadian, M. Ferrara, Influence of impreciseness in designing tritrophic level complex food chain modeling in interval environment. Adv. Difference Equ. 2020(1), 1–24 (2020)

    Article  MathSciNet  Google Scholar 

  38. S. Chen, Z. Liu, L. Wang, J. Hu, Stability of a delayed competitive model with saturation effect and interval biological parameters. J. Appl. Math. Comput. 64(1), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  39. M. Ramezanadeh, M. Heidari, O.S. Fard, A.H. Borzabadi, On the interval differential equation: novel solution methodology. Adv. Difference Equ. 2015(1), 338 (2015)

    Article  MathSciNet  Google Scholar 

  40. U. Ghosh, B. Mondal, M.S. Rahman, S. Sarkar, Stability analysis of a three species food chain model with linear functional response via imprecise and parametric approach. J. Comput. Sci. 54, 101423 (2021)

    Article  Google Scholar 

  41. B. Mondal, U. Ghosh, M.S. Rahman, P. Saha, S. Sarkar, Studies of different types of bifurcations analyses of an imprecise two species food chain model with fear effect and non-linear harvesting. Math. Comput. Simul. 192, 111–135 (2021)

    Article  MathSciNet  Google Scholar 

  42. L. Perko, Differential Equations and Dynamical Systems, 3rd edn. (Springer, New York, 2001)

    Book  Google Scholar 

  43. H. Fatoorehchi, M. Alidadi, R. Rach, A. Shojaeian, Theoretical and experimental investigation of thermal dynamics of Steinhart-Hart negative temperature coefficient thermistors. J. Heat Transfer. 141(7), 072003 (2019)

    Article  Google Scholar 

  44. J.S. Duan, R. Rach, A.M. Wazwaz, A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method. Open Eng. 5(1) (2014)

Download references

Acknowledgements

The authors would want to thank anonymous reviewers and Editor for their valuable comments and constructive suggestions for improving this manuscript. The First author Bapin Mondal would like to thank UGC (Fellowship ID-1152/CSIR-UGC NET DEC 2018), Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

Authors declare that he/she has no conflict of interest.

Ethical approval

This article does not contain any with human participants or animal performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, B., Rahman, M.S., Sarkar, S. et al. Studies of dynamical behaviours of an imprecise predator-prey model with Holling type II functional response under interval uncertainty. Eur. Phys. J. Plus 137, 74 (2022). https://doi.org/10.1140/epjp/s13360-021-02308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02308-9

Navigation