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Abstract This research work inspects mass transport phenomenon of Saffman’s dusty fluid
model for transient magnetohydrodynamics fluid flow of a binary mixture passing through
an annular duct. Particularly, effort has been devoted to theoretically explore the role of
velocity of applied magnetic field. Here, our treatment of the governing momentum equations
accountable for the flow is done using the classical Laplace transform technique and Riemann-
Sum Approximation. The effects of the physical parameters such as time, relaxation time
parameter, radii ratio, Hartmann number, variable mass parameter and velocity of applied
magnetic field on the fluid phase velocity, dust phase velocity and skin friction have been
illustrated pictorially. It is concluded that contrary to the known classical effect of boosting
Hartmann number on velocity, both components of flow (fluid and dust phase) and skin
friction are seen to be heightened with an overwhelming presence of velocity of applied
magnetic field. For large time, it is anticipated that higher profiles for velocity and skin
friction are seen with fluid phase and an accelerated moving wall.

List of symbols

B0 Magnetic flux (Kg−1s−2A−1)
Ha Hartmann number
J Current density (Am−2)
K Stokes resistance coefficient (Kgs−1)
K

′
v Dimensional velocity of applied magnetic field

Kv Dimensionless velocity of applied magnetic field
m Mass of dust particles (Kg)
N0 Number density of dust particles
r′ Dimensional radial distance (m)
R Dimensionless radial distance
r1 Radius of inner cylinder (m)
r2 Radius of outer cylinder (m)

a e-mail: basant777@yahoo.co.uk
b e-mail: daudagambo85@gmail.com (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-021-02284-0&domain=pdf
https://orcid.org/0000-0002-1659-7222
http://orcid.org/0000-0001-8364-2065
mailto:basant777@yahoo.co.uk
mailto:daudagambo85@gmail.com


   67 Page 2 of 20 Eur. Phys. J. Plus          (2022) 137:67 

s Laplace parameter
t′ Dimensional time
t Dimensionless time (s)
u′ Dimensional fluid phase velocity
U0 Characteristic velocity
U Dimensionless fluid phase velocity
v′ Dimensional dust phase velocity
V Dimensionless dust phase velocity

Greek letters

α Varying mass parameter of dust particle
β Electrical conductivity (Kg−1m−3s3A2)
ρ Fluid density (Kgm−3)
σ Relaxation time parameter (s)
λ Radii ratio ( r2

r1
)

υ Kinematic fluid viscosity (m2s−1)
τ Skin friction

1 Introduction

Studies related to two-phase hydromagnetic fluid flow models have remained very active due
to their increasing importance in the field of geophysics and engineering. Such flows help in
better understanding several manufacturing and industrial processes, e.g. purification of crude
oil, centrifugal separation of matter from fluid, fluidization, sedimentation, plasma studies,
geothermal energy extraction, powder technology and paint spraying. Understanding the
phenomenon of dusty fluid (fluid with a distribution of tiny dust particles) aids in improving
the efficiency of such devices conveying the fluid. This can be achieved by overcoming the
wear activities and viscous stresses produced by the resultant interaction of the dust particles
in the form of sooth or ash suspended in the particulate suspension.

Saffman [1] initiated the study on the motion of fluid saturated with dusty particles and
formulated the governing equation accountable for dusty fluid. Liu [2] examined the motion
of a dusty gas driven by an oscillating infinite flat plate. The role of impulsive and accelerated
motion of one of the bounding plates on Couette motion of a dusty gas has been analysed
by Nag et al. [3]. Gupta [4] scrutinised the flow of a viscous incompressible and electrically
conducting fluid in the region between two infinite parallel plates where the influence of
external magnetic field is taken into consideration. The flow is assumed to be triggered by
the impulsive motion of the bounding plate. In another related study, Rossow [5] investigated
the role of impulsive and accelerated motion on hydromagnetic viscous flow in the presence
of external magnetic field. The unsteady motion of a viscous and electrically conducting fluid
suspended with dust gas in which the flow was triggered from rest by the sudden impulsive
movement of the bounding plates was considered by Mitra and Bhattacharyya [6]. In their
work, four different types of boundary movement were taken into account. The influence of
ramped velocity on MHD free convective flow in a coaxial cylinder has been reported by
Vanita and Kumar [7]. They concluded that the velocity of applied magnetic field is enhanced
with an increase in radii ratio and skin friction is rendered ineffective with an increase in
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the velocity of magnetic field. Related literature in which several investigators have studied
various flow configuration in a channel as well as annulus in which the flow sets in by either
impulsive or accelerated movement of the wall can be found in references [8–10].

Regarding the ongoing investigation, Datta and Mishra [11] numerically examined the
steady boundary layer flow of a two-phase fluid passing over a growing flat plate. Employing
the finite difference method to solve the governing momentum and energy equations, Attia
[12] analysed the effects of electric conductivity and variable viscosity on unsteady magneto-
hydrodynamic flow of a dusty fluid in a channel. Kumar and Singh [13] exhibited exact solu-
tion for hydromagnetic fluid flow in a channel with ramped velocity. They reported four cases
of motion of magnetic field. On the other hand, Gireesha et al. [14] undertook an examination
on boundary layer flow and thermal analysis of fluid suspended with dust particle with non-
uniform heat source/sink passing over a stretching sheet. Later on, the effect of viscous dissi-
pation and internal heat generation/absorption on the motion of a dusty fluid over an unsteady
stretching sheet was presented numerically by Gireesha et al. [15]. In furtherance of this work,
Gireesha et al. [16, 17] and Ramesh et al. [18, 19] have all presented details on the effects of
thermal radiation and Hall effect on dusty fluid over stretching surfaces. One unique feature of
their work is they employed a purely numerical approach in solving the governing equations.

However, despite the attempt made by previous workers both experimentally and theoreti-
cally to better understand the physics of the binary mixture and compelling evidence have been
recorded about the behaviour of the fluid, there are still restrictions when it comes to deriving
the exact analytical solution for the unsteady flows in macro-/micro-annular geometry of
which its mathematical ingenuity cannot be overemphasised. This is due to the complexity
arising from the nonlinear nature of the coupled system. However, several investigators have
offered numerous numerical approaches to such flow phenomena for various geometries. In
the light of this, we shall study references [20–29].

Advances in hydrodynamic and thermal attributes of electrically conducting and non-
conducting viscous fluids in an unsteady flow have been reported by a lot of investigators for
different models. The buoyancy effect on unsteady flow of heat generating/absorbing viscous
fluid saturated with porous materials of uniform porosity was exhibited by Yusuf and Gambo
[30, 31]. Gambo and Gambo [32, 33] offered the steady MHD flow in an annulus with thermal
source/sink and suction/injection respectively. To understand the effect of heat distribution
on an electrically conducting heat generating/absorbing fluid for different homogeneous
industrial fluids prescribed by their Prandtl value, Gambo et al. [34] scrutinised the flow
in an annulus with adiabatic and isothermal condition. Several numerical and analytical
approaches have been considered in the treatment of the highly nonlinear and constitutive
couple equations for different models. Generally, the thermal distribution in the system is
seen to properly accentuate the flow characteristics. Recently, Jha and Gambo [35, 36] have
studied the hydrodynamics attribute of fluid passing through an annulus based on Dean flow.

The work of Jha and Gambo [37–39] and Yusuf et al. [40] had significantly reshaped the
studies of transient flow formations in different geometries. In their work, they employed the
use of the classical Laplace transformation in conjunction with Riemann-Sum Approxima-
tion (RSA) in treatment of nonlinear partial differential equations. This is attributed to the
intricacy associated with the Laplace domain solution arising from the nonlinear nature of
the controlling equations which makes the classical Laplace inversion method primitive and
inadequate.

In the light of the survey carried out, we anticipated the semi-analytical study for the
unsteady multiphase flow. To the best of authors’ knowledge, no work has been done to
specifically analyse the impact of velocity of applied magnetic field and relative boundary
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movement on an electrically conducting binary fluid. To fill in the gap, we set out to theoret-
ically examine the motion of an electrically conducting dusty fluid in a horizontal annulus.

The purpose of this analysis is to study the effect of velocity of applied magnetic field and
relative motion on magnetohydrodynamics fluid flow saturated with dust particles. Laplace
transform techniques are applied in solving the nonlinear coupled partial differential equa-
tions for fluid and dust phase in Laplace domain. A numerical inverting technique known as
Riemann-Sum Approximation (RSA) has been employed in transforming the Laplace domain
solution to time domain. The Riemann-Sum Approximation (RSA) solution demonstrates
excellent agreement when compared with the exact solution at large time. The influence of
the flow parameters on the flow formation was studied in detail. This phenomenon is seen in
cavitation pumps and turbines and biomedical equipment conveying heterogeneous mixtures.

2 Mathematical formulation

In the present study, the transient fully developed flow of a viscous incompressible and
electrically conducting dusty fluid in an annular gap formed by two infinitely long horizontal
coaxial cylinders was considered. Here, the polar coordinate system (r

′
, θ, z

′
) was suitably

chosen such that the cylinders lie on the z
′
-axis and the r

′
-axis in the radial direction normal

to the axis of the cylinder. Let r1 and r2 denote the radii of the inner and outer cylinder,
respectively (See Fig. 1). We assumed that the dust particles are uniformly distributed in the
fluid and spherical in shape. The perturbation of the magnetic Reynolds number as a result
of the electric current flowing in the multi-phase fluid is taken to be small enough such that
the influence of the induced magnetic field is negligible Pai [41]. Thus, a uniform magnetic
field B0 is applied externally on the dusty fluid. The number density of dust particle (N0) is
assumed to be constant throughout the motion, and the volume fraction of the dust particle is
neglected. Initially, we assumed that at t

′ ≤ 0, the fluid, dust particles and the cylinders are
at rest. At t

′
> 0, the motion is triggered by the sudden application of the external uniform

magnetic field and movement of the outer cylinder moving with a velocity U0t
′n where n

is any positive integer and U0 the characteristic velocity. In our analysis, we assumed two
values of n; n � 0 to correspond to impulsive motion of the outer cylinder and n � 1 to
denote uniformly accelerated motion of the outer cylinder.

The modified Saffman’s [1] equation for a conducting dusty fluid and non-conducting
dusty fluid utilised in formulating the flow formation are:

∂u′

∂t ′
+

(
u′ · ∇)

u′ � υ ′∇2u′ +
K ′N0

ρ

(
v′ − u′) +

1

ρ
(J × B0), (1)

m ·
[

∂v′

∂t ′
+

(
v′ · ∇)

v′
]

� K ′(u′ − v′), (2)

Divu′ � 0, (3)

∂N0

∂t ′
+ div

(
N0v

′) � 0. (4)

Using the above assumptions, the governing equation describing the fluid transport can
be written following Saffman [1], Mitra and Bhattacharyya [6] and Jha and Apere [9] as:

∂u′

∂t ′
� υ

[
∂2u′

∂r ′2 +
1

r ′
∂u′

∂r ′

]
+
K ′N0

ρ

(
v′ − u′) − βB2

0

ρU0

(
u′ − K ′

vt
′n

)
, (5)

m · ∂v′

∂t′
� K′(u′ − v′). (6)
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Fig. 1 Physical configuration and coordinate system of the problem

With the appropriate initial and boundary conditions.
For t ′ ≤ 0, u′ � 0, r1 ≤ r ′ ≤ r2.

At t ′ > 0

{
u′ � 0 at r ′ � r1

u′ � U0t ′n at r ′ � r2.
(7)

The following non-dimensional parameters have been defined to transform Eqs. (5)–(7)
into their respective dimensionless forms as defined by Mitra and Bhattacharyya [6], Vanita
and Kumar [7] and Jha and Apere [9]:

t � υt
′

r
′2
1

; Ha � B0r
′
1

(
β

υρ

) 1
2

; λ � r′2
r

′
1

; V � v
′

U0
; U � u

′

U0
;

R � r ′

r ′
1

; α � mN0

ρ
; σ � mv′

K ′r ′2
1

; Kv � K ′
v

U0
; (8)

Thus Eqs. (5)–(7) reduce to

∂U

∂t
� ∂2U

∂R2 +
1

R

∂U

∂R
− Ha2(U − Kvt

n) +
α

σ
(V −U ), (9)

σ
∂V

∂t
� (U − V ). (10)

Under the following initial and boundary conditions

t ≤ 0; U � 01 ≤ R ≤ λ,

at t > 0

{
U � 0 at R � 1
U � tn at R � λ,

(11)

where Kv is the velocity of applied magnetic field. Here, four conditions of velocity of applied
magnetic fields were considered:
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i. When the velocity of applied magnetic field is withdrawn (Kv � 0).

ii. When the velocity of applied magnetic field is less than the velocity of outer cylinder
(Kv � 0.5).

iii. When the velocity of applied magnetic field equals the velocity of outer cylinder
(Kv � 1.0).

iv. When the velocity of applied magnetic field is greater than the velocity of the outer
cylinder (Kv � 1.5).

We proceed to obtain the solutions of (9) and (10) for the two cases: the impulsive motion
of the outer cylinder (n � 0) and the accelerated motion of the outer cylinder (n � 1) for
both fluid phase and dust phase. This is achieved by taking n � 0 and n � 1, respectively,
in (9) and (11).

2.1 Case I: impulsive motion

By taking n � 0 in Eqs. (9) and (11), Eqs. (9)–(11) are recast to simulate the impulsive
motion of the outer cylinder and are given as:

∂U

∂t
� ∂2U

∂R2 +
1

R

∂U

∂R
− Ha2(U − Kv) +

α

σ
(V −U ), (12)

σ
∂V

∂t
� (U − V ), (13)

t ≤ 0; U � 0; 1 ≤ R ≤ λ,

at t > 0

{
U � 0 at R � 1
U � 1 at R � λ.

(14)

Seeing that Eqs. (12)–(14) are time dependent, we adopt the use of the Laplace trans-
form technique in transforming Eqs. (12)–(14) to the Laplace domain. This is achieved by
employing the Laplace transform defined by f(R, s) � ∫ ∞

0 f(R, t)e−stdt where s represents
the Laplace parameter and s > 0.

Thus, Eqs. (12)–(14) in the Laplace domain are given as:

d2U

dR2 +
1

R

dU

dR
− (

s + Ha2)U +
Ha2Kv

s
+

α

σ

(
V −U

) � 0, (15)

sσV � U − V , (16)

subject to
{

U � 0 at R � 1
U � 1

s at R � λ.
(17)

Alternatively, Eq. (16) can be written as:

V −U � −sσ

1 + sσ
U . (18)

Substituting Eq. (18) into (15), we obtain

d2U

dR2 +
1

R

dU

dR
−

(
s + Ha2 +

αs

1 + sσ

)
U � −Ha2K

s
. (19)

Following Jha and Apere [9], Jha and Gambo [37, 38] and Tsangaris et al. [42], the
non-homogeneous linear differential equation in (19) can be reduced using the given trans-
formation below:

U (R, s) � F(R, s) +
Ha2Kv

sδ2 , (20)
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where F(R, s) is the homogenous solution of Eq. (19) and δ � (
s + Ha2 + αs

1+sσ

) 1
2 .

Accordingly, under the modified boundary conditions in (17), the general solution of the
fluid phase velocity in Eq. (19) is given as:

U (R, s) � A1 I0(Rδ) + A2K0(Rδ) +
Ha2Kv

sδ2 , (21)

where I0 and K0 are, respectively, the modified Bessel functions of the first kind and second
kind and expressions for A1 and A2 are given in the “Appendix” section.

The drag on the surfaces of the cylinders otherwise known as skin friction produced by the
resultant interaction between the fluid phase and the boundary is computed. The skin frictions
on the surface of the inner and outer cylinder can be derived by directly differentiating Eq. (21)
and evaluating at R � 1 and R � λ, respectively.

τ 1(1, s) � d

dR
U (1, s)

∣∣
R�1 � δ[A1 I1(δ) − A2K1(δ)], (22)

τλ(λ, s) � d

dR
U (λ, s)

∣
∣
R�λ

� δ[A1 I1(λδ) − A2K1(λδ)]. (23)

Utilising Eq. (16), the general solution for the dust phase velocity is written as:

V (R, s) � U (R, s)

1 + sσ
� [A1 I0(Rδ) + A2K0(Rδ) +

Ha2Kv

sδ2 ]
1

1 + sσ
. (24)

The skin frictions on the outer surface of the inner cylinder and the inner surface of the
outer cylinder, respectively, for the dust phase are given as:

τ 1 ∗ (1, s) � d

dR
V (1, s)

∣∣
R�1 � δ

1 + sσ
[A1 I1(δ) − A2K1(δ)], (25)

τλ ∗ (λ, s) � d

dR
V (λ, s)

∣∣
R�λ

� δ

1 + sσ
[A1 I1(λδ) − A2K1(λδ)]. (26)

2.2 Case II: accelerated motion

In order to achieve the uniformly accelerated movement of the outer cylinder for the fluid
phase and dust phase, the value n � 1 has been taken in Eqs. (9) and (11) to correspond to the
case of the accelerated motion. Hence, the equation governing the binary mixture is written as:

∂U

∂t
� ∂2U

∂R2 +
1

R

∂U

∂R
− Ha2(U − Kvt) +

α

σ
(V −U ), (27)

σ
∂V

∂t
� (U − V ), (28)

with the concerned initial and boundary conditions

t ≤ 0;U � 0; 1 ≤ R ≤ λ,

t > 0

{
U � 0 at R � 1
U � t at R � λ.

(29)

Appling the Laplace transform technique, Eqs. (27)–(29) can be written as:

d2U

dR2 +
1

R

dU

dR
− (

s + Ha2)U +
Ha2Kv

s2 +
α

σ

(
V −U

) � 0, (30)

sσV � U − V , (31)
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subject to the modified boundary conditions
{

U � 0 at R � 1
U � 1

s2 at R � λ.
(32)

Equation (31) can be otherwise written as:

V −U � −sσ

1 + sσ
U . (33)

Putting (33) into (30), we get

d2U

dR2 +
1

R

dU

dR
−

(
s + Ha2 +

αs

1 + sσ

)
U � −Ha2Kv

s2 . (34)

The non-homogeneous linear differential equation in (34) is transformed following Jha
and Apere [9], Jha and Gambo [37, 38] and Tsangaris et al. [42]:

U (R, s) � F(R, s) +
Ha2Kv

s2δ2 , (35)

where F(R, s) � A3I0(R) + A4K0(R).

Consequently, the solution of the fluid phase velocity for the accelerated motion under the
associated boundary conditions in (32) is presented as:

U (R, s) � A3 I0(Rδ) + A4K0(Rδ) +
Ha2Kv

s2δ2 , (36)

and the exact expression for A3 and A4 are given in the “Appendix” section.
The skin frictions for the fluid phase at R � 1 and R � λ are computed by differentiating

Eq. (36) and are given below as:

τ 1(1, s) � d

dR
U (1, s)

∣∣
R�1 � δ[A3 I1(δ) − A4K1(δ)], (37)

τλ(λ, s) � d

dR
U (λ, s)

∣∣
R�λ

� δ[A3 I1(λδ) − A4K1(λδ)]. (38)

Employing Eqs. (33) and (36), the solution of the dust phase velocity for the accelerated
motion is given as:

V (R, s) � U (R, s)

1 + sσ
� 1

1 + sσ

[
A3 I0(Rδ) + A4K0(Rδ) +

Ha2Kv

s2δ2

]
. (39)

The drag on the outer surface of the inner cylinder and the inner surface of the outer
cylinder, respectively, for the dust phase is given as:

τ 1 ∗ (1, s) � d

dR
V (1, s)

∣∣
R�1 � δ

1 + sσ
[A3 I1(δ) − A4K1(δ)] (40)

τλ ∗ (λ, s) � d

dR
V (λ, s)

∣∣
R�λ

� δ

1 + sσ
[A3 I1(λδ) − A4K1(λδ)]. (41)

2.3 Riemann-sum approximation (RSA)

It is principal to note that all the derived solutions in the previous sections are in Laplace
domain and are to be inverted to time domain so as to determine the fluid phase velocity, dust
phase velocity and skin frictions for both impulsive and accelerated motion. Due to the intri-
cacy of the closed form solutions, the classical Laplace inversion appears inadequate. Hence,
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we adopted the use of a numerical inversion technique based on Riemann-Sum Approxima-
tion (RSA). In this method, a function of the Laplace domain can be transformed to a function
of time domain as follows:

U (R, t) � eεt

t

[
U (R, s)

2
+ Re

(
W∑

n�1

U (R, ε +
inπ

t
)

)

(−1)n

]

, (42)

V (R, t) � eεt

t

[
V (R, s)

2
+ Re

(
W∑

n�1

V (R, ε +
inπ

t
)

)

(−1)n

]

, (43)

τ(R, t) � eεt

t

[
τ(R, s)

2
+ Re

(
W∑

n�1

τ (R, ε +
inπ

t
)

)

(−1)n

]

, (44)

τ ∗ (R, t) � eεt

t

[
τ ∗ (R, s)

2
+ Re

(
W∑

n�1

τ ∗ (R, ε +
inπ

t
)

)

(−1)n

]

, (45)

where Re represents the real part of the summation, i is the imaginary unit,W is the number of
terms involved in the summation, and ε is the real part of the Bromwich contour that is used
in inverting Laplace transform. The Riemann-Sum Approximation (RSA) for the Laplace
inversion involves a single summation for the numerical computation, of which its exactness
is dependent on the value of ε and the truncation error prescribed by W. Following Tzou [43],
the stability of the solution is best achieved by taking εt � 4.7.

2.4 Exact solution (ES)

In an effort to illustrate how efficient the numerical inversion method adopted in transforming
the Laplace domain solution to time domain is, the steady state solution is computed. This is
accomplished by taking α � 0 or σ → ∞ or ∂()

∂t � 0 in Eqs. (12) and (13) with the relevant
boundary conditions. It is anticipated that steady state solution and transient solution will
match at large time. In essence, at large time, the time-dependent solution coincides with the
exact solution. Consequently, Eqs. (12, 13, 14) reduce to:

d2Us

dR2 +
1

R

dUs

dR
− Ha2(Us − Kv) � 0, (46)

{
Us � 0 at R � 1
Us � 1 at R � λ.

(47)

Following the approach of Jha and Apere [9], Jha and Gambo [37, 38] and Tsangaris et al.
[42], the solution of Eq. (46) under boundary condition (47) is given as:

Us(R) � [A5 I0(RHa) + A6K0(RHa)] + Kv, (48)

where A5 and A6 are given in the “Appendix” section.
Differentiating Eq. (48) at R � 1 and R � λ, respectively, gives the steady state skin

friction:

τs1 � dUs

dR

∣∣∣∣
R�1

� Ha[A5 I1(Ha) − A6K1(Ha)], (49)

τsλ � dUs

dR

∣∣∣∣
R�λ

� Ha[A5 I1(λHa) − A6K1(λHa)]. (50)
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Table 1 Numerical comparison for transient state impulsive fluid phase velocity obtained using Riemann-Sum
Approximation (RSA) and exact solution (ES) (Ha � 1.0, α � 0.3, σ � 0.1)

t R Kv � 0.0 Kv � 0.5 Kv � 1.0 Kv � 1.5

RSA ES RSA ES RSA ES RSA ES

0.06 1.2 0.0223 0.2250 0.0405 0.2647 0.0588 0.3044 0.0770 0.3440

1.4 0.0859 0.4237 0.1099 0.4798 0.1340 0.5359 0.1580 0.5920

1.6 0.2474 0.6116 0.2710 0.6653 0.2945 0.7190 0.3181 0.7727

1.8 0.5554 0.8005 0.5724 0.8352 0.5893 0.8699 0.6063 0.9047

0.2 1.2 0.1472 0.2250 0.1795 0.2647 0.2119 0.3044 0.2442 0.3440

1.4 0.3030 0.4237 0.3482 0.4798 0.3934 0.5359 0.4385 0.5920

1.6 0.4923 0.6116 0.5358 0.6653 0.5793 0.7190 0.6227 0.7727

1.8 0.7257 0.8005 0.7544 0.8352 0.7831 0.8699 0.8118 0.9047

0.4 1.2 0.2026 0.2250 0.2403 0.2647 0.2779 0.3044 0.3155 0.3440

1.4 0.3895 0.4237 0.4425 0.4798 0.4956 0.5359 0.5486 0.5920

1.6 0.5786 0.6116 0.6295 0.6653 0.6803 0.7190 0.7312 0.7727

1.8 0.7805 0.8005 0.8136 0.8352 0.8466 0.8699 0.8796 0.9047

2.0 1.2 0.2251 0.2250 0.2647 0.2647 0.3044 0.3044 0.3441 0.3440

1.4 0.4237 0.4237 0.4798 0.4798 0.5359 0.5359 0.5921 0.5920

1.6 0.6117 0.6116 0.6654 0.6653 0.7191 0.7190 0.7728 0.7727

1.8 0.8006 0.8005 0.8353 0.8352 0.8700 0.8699 0.9047 0.9047

In an attempt to authenticate the proficiency of the numerical inversing technique, numeri-
cal values obtained using Riemann-Sum Approximation (RSA) and exact solution (ES) have
been tabulated. It is seen that at large time, Riemann-Sum Approximation coincides with the
exact solution (ES). (See Tables 1, 2, 3, 4).

3 Results and discussion

In this section, we examine the effect of time (t), Hartmann number (Ha), velocity of applied
magnetic field (Kv), varying mass parameter (α) and relaxation time (σ ) on the flow forma-
tion. In order to achieve this, a MATLAB program has been written to generate plots and
numerical values for the velocities and skin frictions of the fluid phase and dust phase. In the
course of our plots and computation, four values of applied magnetic field (Kv) were selected.
Here, we consider the case when the outer cylinder is subjected to impulsive movement and
the case when the flow is due to the accelerated movement of the outer cylinder. All through
the present analysis, figures labelled (a) showcase the component of fluid phase and figures
labelled (b) depict the component of dust phase as seen in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13.

Figure 2 illustrates the action of time (t) on local velocity for the fluid phase and dust
phase of an impulsively moving wall. It can be seen that a growing time (t) is accompanied
by an increase in velocity for the fluid phase and dust phase, respectively, in all four cases of
applied magnetic field (Kv). We carefully observe that maximum velocity profiles are borne
out when the velocity of applied magnetic field (Kv � 1.5) is greater than the velocity of the
moving cylinder for both fluid phase and dust phase. However, a slightly different behaviour
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Table 2 Numerical comparison for transient state impulsive dust phase velocity obtained using Riemann-Sum
Approximation (RSA) and exact solution (ES) (Ha � 1.0, α � 0.3, σ � 0.1)

t R Kv � 0.0 Kv � 0.5 Kv � 1.0 Kv � 1.5

RSA ES RSA ES RSA ES RSA ES

0.06 1.2 0.0027 0.2250 0.0079 0.2647 0.0131 0.3044 0.0183 0.3440

1.4 0.0138 0.4237 0.0203 0.4798 0.0268 0.5359 0.0333 0.5920

1.6 0.0552 0.6116 0.0616 0.6653 0.0680 0.7190 0.0744 0.7727

1.8 0.1753 0.8005 0.1802 0.8352 0.1852 0.8699 0.1901 0.9047

0.2 1.2 0.0817 0.2250 0.1043 0.2647 0.1270 0.3044 0.1496 0.3440

1.4 0.1833 0.4237 0.2145 0.4798 0.2456 0.5359 0.2767 0.5920

1.6 0.3340 0.6116 0.3640 0.6653 0.3941 0.7190 0.4242 0.7727

1.8 0.5565 0.8005 0.5768 0.8352 0.5972 0.8699 0.6175 0.9047

0.4 1.2 0.1744 0.2250 0.2089 0.2647 0.2434 0.3044 0.2779 0.3440

1.4 0.3432 0.4237 0.3917 0.4798 0.4401 0.5359 0.4885 0.5920

1.6 0.5274 0.6116 0.5738 0.6653 0.6203 0.7190 0.6668 0.7727

1.8 0.7388 0.8005 0.7692 0.8352 0.7996 0.8699 0.8300 0.9047

2.0 1.2 0.2251 0.2250 0.2647 0.2647 0.3044 0.3044 0.3441 0.3440

1.4 0.4237 0.4237 0.4798 0.4798 0.5359 0.5359 0.5920 0.5920

1.6 0.6117 0.6116 0.6654 0.6653 0.7191 0.7190 0.7728 0.7727

1.8 0.8006 0.8005 0.8353 0.8352 0.8700 0.8699 0.9047 0.9047

(a) (b)

Fig. 2 Impulsive velocity profile for variations of time (t) for fluid phase (a) and dust phase (b)(Ha � 1.0, α �
0.3, σ � 0.1)

is perceived as time (t) is increased for the dust phase velocity. It is seen that the increase
is not significant towards the outer wall in comparison with the fluid phase velocity when
t � 0.1. This is due to lagging caused by the dust particle in the binary mixture when the
motion sets in.

The impact of time (t) on velocity profiles for fluid phase and dust phase when the move-
ment of the outer cylinder is accelerated is presented in Fig. 3. Here one finds that as time
(t) is increased, both components of the velocities increase. However, the relaxation time
parameter (σ ) plays an important role in reducing the magnitude of the dust phase velocity.
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Table 3 Numerical comparison for transient state impulsive fluid phase skin friction at R � 1 obtained using
Riemann-Sum Approximation (RSA) and exact solution (ES) (λ � 1.8, α � 0.3, σ � 0.1).

t Ha Kv � 0.0 Kv � 0.5 Kv � 1.0 Kv � 1.5

RSA ES RSA ES RSA ES RSA ES

0.06 1.0 0.3678 1.5316 0.5075 1.7461 0.6472 1.9605 0.7869 2.1749

1.5 0.3480 1.3509 0.6550 1.8041 0.9620 2.2573 1.2690 2.7105

2.0 0.3223 1.1436 0.8506 1.8877 1.3790 2.6318 1.9073 3.3759

2.5 0.2921 0.9356 1.0850 1.9972 1.8778 3.0589 2.6707 4.1206

3.0 0.2592 0.7443 1.3480 2.1316 2.4368 3.5189 3.5256 4.9062

0.2 1.0 1.2552 1.5316 1.4525 1.7461 1.6499 1.9605 1.8472 2.1749

1.5 1.1303 1.3509 1.5524 1.8041 1.9744 2.2573 2.3965 2.7105

2.0 0.9799 1.1436 1.6820 1.8877 2.3841 2.6318 3.0863 3.3759

2.5 0.8209 0.9356 1.8351 1.9972 2.8494 3.0589 3.8636 4.1206

3.0 0.6672 0.7443 2.0066 2.1316 3.3459 3.5189 4.6852 4.9062

0.4 1.0 1.4732 1.5316 1.6841 1.7461 1.8951 1.9605 2.1061 2.1749

1.5 1.3060 1.3509 1.7532 1.8041 2.2004 2.2573 2.6476 2.7105

2.0 1.1118 1.1436 1.8482 1.8877 2.5846 2.6318 3.3210 3.3759

2.5 0.9142 0.9356 1.9676 1.9972 3.0211 3.0589 4.0746 4.1206

3.0 0.7304 0.7443 2.1099 2.1316 3.4894 3.5189 4.8689 4.9062

3.0 1.0 1.5318 1.5316 1.7464 1.7461 1.960 1.9605 2.1749 2.1749

1.5 1.3510 1.3509 1.8042 1.8041 2.2573 2.2573 2.7104 2.7105

2.0 1.1437 1.1436 1.8876 1.8877 2.6316 2.6318 3.3758 3.3759

2.5 0.9357 0.9356 1.9972 1.9972 3.0588 3.0589 4.1205 4.1206

3.0 0.7444 0.7443 2.1315 2.1316 3.5189 3.5189 4.9063 4.9062

(a) (b)

Fig. 3 Accelerated velocity profile for variations of time (t) for fluid phase (a) and dustphase (b)(Ha �
1.0, α � 0.3, σ � 0.1)

The influence of Hartmann number (Ha) on the fluid phase velocity and dust phase velocity
is demonstrated in Fig. 4a and b for an impulsively moving wall. As expected, the classical
effect of Hartmann number (Ha) is to retard local velocity in the absence of applied magnetic
field (Kv � 0.0). Nevertheless, with the amplification of the strength of applied magnetic
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Table 4 Numerical comparison for transient state impulsive dust phase skin friction at R � 1 obtained using
Riemann-Sum Approximation (RSA) and exact solution (ES) (λ � 1.8, α � 0.3, σ � 0.1).

t Ha Kv � 0.0 Kv � 0.5 Kv � 1.0 Kv � 1.5

RSA ES RSA ES RSA ES RSA ES

0.06 1.0 0.0520 1.5316 0.0971 1.7461 0.1423 1.9605 0.1875 2.1749

1.5 0.0495 1.3509 0.1496 1.8041 0.2497 2.2573 0.3498 2.7105

2.0 0.0464 1.1436 0.2206 1.8877 0.3948 2.6318 0.5690 3.3759

2.5 0.0426 0.9356 0.3076 1.9972 0.5726 3.0589 0.8376 4.1206

3.0 0.0384 0.7443 0.4082 2.1316 0.7779 3.5189 1.1476 4.9062

0.2 1.0 0.7877 1.5316 0.9368 1.7461 1.0858 1.9605 1.2349 2.1749

1.5 0.7179 1.3509 1.0397 1.8041 1.3616 2.2573 1.6834 2.7105

2.0 0.6322 1.1436 1.1739 1.8877 1.7156 2.6318 2.2573 3.3759

2.5 0.5394 0.9356 1.3321 1.9972 2.1248 3.0589 2.9174 4.1206

3.0 0.4473 0.7443 1.5079 2.1316 2.5685 3.5189 3.6291 4.9062

0.4 1.0 1.3382 1.5316 1.5381 1.7461 1.7380 1.9605 1.9379 2.1749

1.5 1.1928 1.3509 1.6181 1.8041 2.0435 2.2573 2.4688 2.7105

2.0 1.0220 1.1436 1.7253 1.8877 2.4287 2.6318 3.1321 3.3759

2.5 0.8460 0.9356 1.8565 1.9972 2.8670 3.0589 3.8775 4.1206

3.0 0.6803 0.7443 2.0087 2.1316 3.3371 3.5189 4.6655 4.9062

3.0 1.0 1.5318 1.5316 1.7462 1.7461 1.9607 1.9605 2.1751 2.1749

1.5 1.3510 1.3509 1.8042 1.8041 2.2575 2.2573 2.7107 2.7105

2.0 1.1437 1.1436 1.8879 1.8877 2.6320 2.6318 3.3762 3.3759

2.5 0.9357 0.9356 1.9974 1.9972 3.0592 3.0589 4.1209 4.1206

3.0 0.7444 0.7443 2.1318 2.1316 3.5192 3.5189 4.9066 4.9062

(a) (b)

Fig. 4 Impulsive velocity profile for variations of Hartmann number (Ha) for fluid phase (a) and dust phase
(b) (t � 0.2, α � 0.3, σ � 0.1)

field (Kv), the Lorentz force is rendered less effective, and thus the effect of velocity of
applied magnetic field (Kv) becomes obvious even as Hartmann number (Ha) is enhanced,
thereby accelerating the velocity for both fluid and dust phase. This can only be said with
the application of velocity of magnetic field (Kv > 0.0).
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(a) (b)

Fig. 5 Accelerated velocity profile for variations of Hartmann number (Ha) for fluid phase (a) and dust phase
(b) (t � 0.2, α � 0.3, σ � 0.1)

(a) (b)

Fig. 6 Impulsive velocity profile for variations of varying mass parameter of dust particle (α) for fluid phase
(a) and dust phase (b) (t � 0.2, Ha � 1.0, σ � 0.1)

Figure 5 shows the variation of velocity profiles for both fluid phase and dust phase for
different values of Hartmann number (Ha) when the accelerated motion of the outer wall is
considered. It is interesting to note that the retarding effect of Hartmann number (Ha) on fluid
flow is noticed in the absence of applied magnetic field is (Kv � 0.0) for both components
of velocity. A counter trend is observed when magnetic field (Kv > 0) is applied on the fluid.
We note that the fluid velocity profiles increase as Hartmann number (Ha) is increased. This
can be ascribed to the increasing effect of the applied magnetic field (Kv) overwhelming the
Lorentz force. In addition, the increase is more pronounced for the fluid phase and higher
magnetic field (Kv).

Figures 6 and 7 exhibit the action of varying mass parameter (α) on the components of
the velocity for an impulsively and accelerated moving wall respectively. It is seen that the
increasing effect of the varying mass parameter (α) is to lower velocity.

The consequences of enhancing the strength of relaxation time (σ ) on the fluid and dust
phases of an impulsively moving cylinder and accelerating moving cylinder are demonstrated
in Figs. 8 and 9, respectively. A clear indication shows that the influence of the relaxation
time (σ ) is to lessen the component of the dust velocity. This is ascribed to the fact that a
longer time is taken to perturb the dust particles within the system thus retarding flow.
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(a) (b)

Fig. 7 Accelerated velocity profile for variations of varying mass parameter of dust particle (α) for fluid phase
(a) and dust phase (b) (t � 0.2, Ha � 1.0, σ � 0.1)

(a) (b)

Fig. 8 Impulsive velocity profile for variations of relaxation time (σ ) for fluid phase (a) and dust phase (b)
(t � 0.2, α � 0.3, Ha � 1.0)

(a) (b)

Fig. 9 Accelerated velocity profile for variations of relaxation time (σ ) for fluid phase (a) and dust phase (b)
(t � 0.2, α � 0.3, Ha � 1.0)
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(a) (b)

Fig. 10 Skin friction profile for variations of time (t) of an impulsively moving wall for fluid phase (a) and
dust (α � 0.3, σ � 0.1, R � 1)

(a) (b)

Fig. 11 Skin friction profile for variations of time (t) of an accelerating moving wall for fluid phase (a) and
dust (α � 0.3, σ � 0.1, R � 1)

Figures 10 and 11 describe the role of time (t) and Hartmann number (Ha) on local
skin friction at the surface of the outer cylinder for an impulsively and accelerating moving
wall, respectively. It is clear from Fig. 10 that as time (t) and Hartmann number (Ha) are
amplified, there is a general increase in skin friction for both fluid phase and dust phase. A
similar behaviour is observed for an accelerating moving cylinder as illustrated in Fig. 11. It
is important to note that the increase is least in the absence of velocity of applied magnetic
field (Kv � 0).

The impact of Hartmann number (Ha) on skin friction distribution at the inner surface of
the outer cylinder for both fluid phase and dust phase as time (t) is increasing for an impulsive
and accelerated motion, respectively, is displayed in Figs. 12 and 13. We observed that as
Hartmann number (Ha) is increased, the trend is seen to grow for all cases of velocity of
applied magnetic field (Kv). This is true for both cases of boundary movement expect for
an impulsively moving dust particle. In addition, a higher profile for skin friction is seen for
dust phase of an impulsively moving outer cylinder.
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(a) (b)

Fig. 12 Skin friction profile for variations of time (t) of an impulsively moving wall for fluid phase (a) and
dust (α � 0.3, σ � 0.1, R � λ)

(a) (b)

Fig. 13 Skin friction profile for variations of time (t) of an accelerating moving wall for fluid phase (a) and
dust (α � 0.3, σ � 0.1, R � λ)

4 Conclusions

The MHD flow of a fluid saturated with particulate suspension under the influence of velocity
of applied magnetic field based on Saffman’s dusty fluid model has been discussed. The setup
of this flow was done in such a way that the fluid flow in the annular gap was triggered by the
impulsive movement or accelerated movement of the bounding wall in addition to the applied
velocity of magnetic field (Kv). The equations describing the flow have been solved with
minimum error in the time domain using Laplace transformation and a numerical inversion
method based on Riemann-Sum Approximation (RSA). The result was vetted by presenting
a comparative exact solution. Notable outcomes of the study are given as follows:

i. Fluid phase velocity and dust phase velocity can be intensified by increasing time (t)
and strengthening the effect of applied magnetic field (Kv).

ii. The components of velocity are improved by increasing Hartmann number (Ha) for both
an impulsively moving wall and accelerated wall. Although this attribute is unnoticed in
the absence of velocity of applied magnetic field (Kv). This behaviour has captivating
applications in hemodynamics and biofluid engineering.
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iii. Skin frictions on the surfaces of the inner and outer cylinders can be increased by
increasing time (t), respectively.

iv. Higher variable mass parameter (α) and suppression of velocity of applied magnetic
field reduce the velocity profiles for dust phase and fluid phase.

v. Relaxation time parameter increases the fluid velocity distribution, while a contrary
conduct is recorded for the dust phase velocity profile.
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Appendix

A1 �

(
− Ha2Kv

sδ2

)
K1(λδ) −

(
1
s − Ha2Kv

sδ2

)
K1(δ)

I1(δ)K1(λδ) − I1(λδ)K1(δ)
; A2 �

(
1
s − Ha2Kv

sδ2

)
I1(δ) −

(
− Ha2Kv

sδ2

)
I1(λδ)

I1(δ)K1(λδ) − I1(λδ)K1(δ)
;

A3 �

(
− Ha2Kv

s2δ2

)
K1 (λδ) −

(
1
s2 − Ha2Kv

s2δ2

)
K1 (δ)

I1 (δ) K1 (λδ) − I1 (λδ) K1 (δ)
; A4 �

(
1
s2 − Ha2Kv

s2δ2

)
I1 (δ) −

(
− Ha2Kv

s2δ2

)
I1 (λδ)

I1 (δ) K1 (λδ) − I1 (λδ) K1 (δ)
;

A5 � −Kv{K1(Ha) + K1(λHa)} + K1(Ha)
I1(λHa)K1(Ha) − K1(λHa)I1(Ha)

; A6 � Kv{I1(Ha) − I1(λHa)} − I1(Ha)
I1(λHa)K1(Ha) − K1(λHa)I1(Ha)

;
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