Skip to main content
Log in

Vibrational behavior of atomic force microscope beam via different polymers and immersion environments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates the dynamic behavior of a V-shaped atomic force microscope (AFM) beam using different polymers and immersion environments. Polystyrene (PS), polypropylene (PP), polycarbonate (PC), acrylonitrile butadiene styrene (ABS), and high-impact polystyrene (HIPS) polymers have been used as the polymeric samples. Based on the importance and applications of these polymers in micro- and nanotechnology, it is necessary to find the mechanical properties in nanoscale. Considering these samples for AFM beam as new research can be interesting. Nanoindentation for extension and retraction regimes has been done by NT-MDT SOLVER P47 scanning probe microscope. For calibration of computing in nanoscale, polyethylene and EPDM rubber have been applied. For the mathematical modeling of the dynamic behavior of the V-shaped AFM beam, Timoshenko beam theory has been applied, and for modeling the contact between beam and samples, DMT (Derjaguin–Muller–Toporov) contact theory has been used to consider the adhesion due to a soft sample. Air, water, methanol, and acetone have been considered as beam environments. Finite element modeling (FEM) has been used to obtain the frequency response function (FRF) and resonant frequency of the beam. Mathematica software (version 8) has been used for programming equations in FEM. The results show that increasing the elasticity modules of the samples increases the resonant frequency, but the amplitude of FRF of vertical movement of the beam declines. By increasing the liquid viscosity as the immersion environments, the resonant frequency amplitude of FRF of vertical movement of the beam decreases. The results of theoretical modeling have been compared with the experimental method (by JPK Instruments-Nano Wizard 2 Atomic Force Microscope). The results show agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

A :

Area of the cross section

AFM:

Atomic force microscope

\(c_{a}\) :

Additional hydrodynamic damping for rectangular cantilever

\(c^{\prime}_{a}\) :

Additional hydrodynamic damping for double tapered cantilever

\(c_{\infty }\) :

Hydrodynamic damping for rectangular cantilever when the cantilever is vibrating in free liquid

\(c^{\prime}_{\infty }\) :

Hydrodynamic damping for double tapered cantilever when the cantilever is vibrating in free liquid

\(c_{s}\) :

Hydrodynamic damping for rectangular cantilever when the cantilever is close to the surface

\(c^{\prime}_{s}\) :

Hydrodynamic damping for double tapered cantilever when the cantilever is close to the surface

\(C_{b}\) :

Breadth taper ratio

\(C_{h}\) :

Height taper ratio

d :

Distance between the lower edge of the cantilever and the centroid of the cross section

D:

Equilibrium tip–sample separation between the cantilever tip and the sample surface

\(D_{0}\) :

Initial beam deflection

E :

Young's modulus

\(E_{r}\) :

Declined elastic modulus of the tip–sample contact

\(E_{t}\) :

Young's modulus of the tip

\(E_{s}\) :

Young's modulus of the sample

\(F_{ts}\) :

Tip–sample force vector

\(f_{ts}\) :

Forces and moments at contact node

\(f_{t} ,f_{n}\) :

Interaction forces in tangential and normal directions of sample surface

\(f_{{d_{1} }}\) :

Hydrodynamic force for rectangular cantilever

\(f_{{d_{2} }}\) :

Hydrodynamic force for double tapered cantilever

G :

Shear modulus

\(G_{t}\) :

Shear modulus of the tip

\(G_{s}\) :

Shear modulus s of the sample

H :

Distance from the natural axis of the beam to the top of the tip

\(h(x,t)\) :

The transient distance between the rectangular cantilever and the surface

\(h^{\prime}(x,t)\) :

The transient distance between the double tapered cantilever and the surface

I :

Moment of the cross section

k :

Shear coefficient

\(k_{c}\) :

Cantilever contact stiffness

\(k_{n} ,k_{t}\) :

Linear normal and lateral contact stiffness of the sample surface

\(k_{n1} ,k_{n2} ,k_{t1} ,k_{t2}\) :

Non-linear normal and lateral contact stiffness of the sample surface

kAG :

Shear rigidity

\(K_{T - S}\) :

Matrix stiffness coefficient of the tip–sample interaction force

\(k_{c}\) :

Beam stiffness

\(k_{ts}\) :

Matrix stiffness exacts at the end of cantilever

\(m_{{{\text{tip}}}}\) :

Tip mass

N :

The number of total discrete grid points in the domain

P :

Applied force

r :

Timoshenko beam parameter to describe the rotatory inertia effect

\(R_{t}\) :

Tip radius

s :

Parameter to describe the shear deformation effect

t :

Time

w :

Transverse deflection of the cantilever

x :

Longitudinal coordinate

y :

General transverse deflection of the cantilever

t :

Time

\(Z_{0}\) :

Surface offset

\(\xi\) :

Longitudinal coordinate parameter for the cantilever

α :

Angle between the cantilever and sample surface

λ :

Non dimensional resonant frequency parameter

ρ :

Mass density

\(\rho_{a}\) :

Additional mass density

ρA :

Mass per unit length

\(\mu\) :

Dimensionless

Φ,:

Bending angles of the cantilever

ω :

Circular resonant frequency

\(\Lambda\) :

Tip–sample contact stiffness

\(\delta\) :

Vertical displacement of piezoelectric scanner

\(\delta^{\prime}\) :

Vertical displacement of tip

\(\delta_{0}\) :

Static contact deformation

\(\eta\) :

Density of the liquid

ν :

Poisson's ratio

\(\nu_{t}\) :

Poisson’s ratio of the tip

\(\nu_{s}\) :

Poisson’s ratio of the sample

References

  1. G. Binning, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  ADS  Google Scholar 

  2. U. Rabe, S. Hirsekorn, M. Reinstädtler, T. Sulzbach, C.H. Lehrer, W. Arnold, Influence of the cantilever holder on the vibrations of AFM cantilevers. Nanotechnology 18(4), 044008 (2007)

    Article  ADS  Google Scholar 

  3. O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507–514 (2007)

    Article  ADS  Google Scholar 

  4. S. Eslami, N. Jalili, A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces. Ultramicroscopy 117, 31–45 (2012)

    Article  Google Scholar 

  5. A. Sadeghi, The flexural vibration of V shaped atomic force microscope cantilevers by using the Timoshenko beam theory. ZAMM J. Appl. Math. Mech. 92(10), 782–800 (2012)

    Article  MathSciNet  Google Scholar 

  6. A.F. Payam, Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations. Ultramicroscopy 135, 84–88 (2013)

    Article  Google Scholar 

  7. A.H. Korayem, A. Mashhadian, M.H. Korayem, Vibration analysis of different AFM cantilever with a piezoelectric layer in the vicinity of rough surfaces. Eur. J. Mech. A Solids 65, 313–323 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.H. Korayem, A. Alipour, D. Younesian, Vibration suppression of atomic-force microscopy cantilevers covered by a piezoelectric layer with tensile force. J. Mech. Sci. Technol. 32, 4135–4144 (2018)

    Article  Google Scholar 

  9. T.T.H. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko, A.I. Frenkel, P.J.A. Kenis, A.A. Gewirth, Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140(17), 5791–5797 (2018)

    Article  Google Scholar 

  10. M. Versaci, A. Jannelli, F.C. Morabito, G. Angiulli, A semi-linear elliptic model for a circular membrane MEMS device considering the effect of the fringing field. J. Sens. 21(15), 5237 (2021)

    Article  ADS  Google Scholar 

  11. X.Y. Gao, Y.J. Guo, W.R. Shan, Shallow water in an open sea or a wide channel: auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. J. Chaos Solitons Fractals 138, 109950 (2020)

    Article  Google Scholar 

  12. X.Y. Gao, Y.J. Guo, W.R. Shan, Water-wave symbolic computation for the Earth, Enceladus and Titan: the higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations. J. Appl. Math. Lett. 104, 106170 (2020)

    Article  Google Scholar 

  13. C.R. Zhang, B. Tian, Q.X. Qu, L. Liu, H.Y. Tian, Vector bright solitons and their interactions of the couple Fokas–Lenells system in a birefringent optical fiber. J. Z. Angew. Math. Phys. 71(18), 1–19 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  14. S.S. Chen, B. Tian, J. Chai, X.Y. Wu, D. Zhong, Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication. Waves Random Complex Media 30(3), 389–402 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Wnag, B. Tian, Y. Sun, Z. Zhang, Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles. J. Comput. Math. Appl. 79(3), 576–587 (2020)

    Article  MathSciNet  Google Scholar 

  16. X.Y. Gao, Y.J. Guo, W.R. Shan, Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. J. Phys. Lett. A 384(3), 126788 (2020)

    Article  Google Scholar 

  17. X.Y. Gao, Y.J. Guo, W.R. Shan, Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili–Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports. J. Waves Random Complex Media (in Press) (2021)

  18. B. Tang, A.H.W. Ngan, J.B. Pethica, A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy. Nanotechnology 19(49), 495713 (2008)

    Article  Google Scholar 

  19. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951)

    MATH  Google Scholar 

  20. H. Hosaka, K. Itao, S. Kuroda, Damping characteristics of beam-shaped micro-oscillators. J. Sens. Actuators 49, 87–95 (1995)

    Article  Google Scholar 

  21. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  ADS  Google Scholar 

  22. J.A. Turner, Non-linear Vibrations of a Beam with Cantilever-Hertzian Contact Boundary Conditions. J. Sound Vib. 275, 177–191 (2004)

    Article  ADS  Google Scholar 

  23. Y. Song, B. Bhushan, Simulation of dynamic modes of atomic force microscopy using a 3D finite element model. J. Ultramicrosc. 106, 847–873 (2006)

    Article  Google Scholar 

  24. F.Y. Cheng, Matrix Analysis of Structural Dynamics (MARCEL DEKKER, INC., New York, 2001)

    Google Scholar 

  25. C.Q. Wang, H. Wang, G.H. Gu, J.G. Fu, Q.Q. Lin, Y.N. Liu, Interfacial interactions between plastic particles in plastics flotation. Waste Manag. 46, 56–61 (2015)

    Article  Google Scholar 

  26. Q. Shen, New insight on critical Hamaker constant of solid materials. Mater. Res. Bull. 133, 111082 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sadeghi.

Appendices

Appendix A. Timoshenko beam model

Here mass, stiffness, and damping matrices (Fig. 27) are introduced using Timoshenko beam principle [24]:

$$ \begin{aligned} & [k]_{e} = \\ & \frac{{2\,\overline{EI} }}{{(1 + \phi )L^{3} }}\left[ {\begin{array}{*{20}lll} {L^{2} (2 + A_{1} + \phi /2)} \hfill &\quad {L^{2} (1 - \phi /2)} \hfill &\quad { - L(3 + A_{1} )} \hfill &\quad { - L(3 + A_{1} )} \hfill \\ {} \hfill &\quad {L^{2} (2 - A_{1} + \phi /2)} \hfill &\quad { - L(3 - A_{1} )} \hfill &\quad { - L(3 - A_{1} )} \hfill \\ {} \hfill & {} \hfill &\qquad 6 \hfill &\qquad 6 \hfill \\ {Sym} \hfill & {} \hfill & {} \hfill &\qquad 6 \hfill \\ \end{array} } \right] \\ \end{aligned} $$
(48)
$$ [m]_{e} = [m_{t} ]_{e} + [m_{r} ]_{e} $$
(49)

where \([m_{t} ]_{e}\) and \([m_{r} ]_{e}\) represent the mass matrix for shear inertia and rotatory inertia effects, respectively.

$$ [m_{t} ]_{e} = \left[ {\begin{array}{*{20}l} {t_{11} } \hfill & {t_{12} } \hfill & {t_{13} } \hfill & {t_{14} } \hfill \\ {} \hfill & {t_{22} } \hfill & {t_{23} } \hfill & {t_{24} } \hfill \\ {} \hfill & {} \hfill & {t_{33} } \hfill & {t_{34} } \hfill \\ {Sym} \hfill & {} \hfill & {} \hfill & {t_{44} } \hfill \\ \end{array} } \right] $$
(50)
$$ \begin{aligned} t_{11} & = \frac{{\rho A_{i} L^{3} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{240} + \frac{\phi }{105} + \frac{1}{168}} \right) + \frac{{\rho A_{j} L^{3} }}{{(1 + \varphi )^{2} }}\left( {\frac{{\phi^{2} }}{240} + \frac{\phi }{140} + \frac{1}{280}} \right), \\ t_{12} & = \frac{{ - \rho A_{i} L^{3} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{240} + \frac{\phi }{120} + \frac{1}{280}} \right) - \frac{{\rho A_{j} L^{3} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{240} + \frac{\phi }{120} + \frac{1}{280}} \right), \\ t_{13} & = \frac{{ - \rho A_{i} L^{2} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{40} + \frac{5\phi }{{84}} + \frac{1}{28}} \right) - \frac{{\rho A_{j} L^{2} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{60} + \frac{9\phi }{{280}} + \frac{1}{60}} \right), \\ t_{14} & = \frac{{\rho A_{i} L^{2} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{60} + \frac{9\phi }{{280}} + \frac{1}{70}} \right) + \frac{{\rho A_{j} L^{2} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{40} + \frac{3\phi }{{70}} + \frac{1}{60}} \right), \\ t_{22} & = \frac{{\rho A_{i} L^{3} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{240} + \frac{\phi }{140} + \frac{1}{280}} \right) + \frac{{\rho A_{j} L^{3} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{240} + \frac{\phi }{105} + \frac{1}{168}} \right), \\ t_{23} & = \frac{{\rho A_{i} L^{3} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{40} + \frac{3\phi }{{70}} + \frac{1}{60}} \right) + \frac{{\rho A_{j} L^{3} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{60} + \frac{9\phi }{{280}} + \frac{1}{70}} \right), \\ t_{24} & = \frac{{ - \rho A_{i} L^{2} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{60} + \frac{9\phi }{{280}} + \frac{1}{60}} \right) - \frac{{\rho A_{j} L^{2} }}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{40} + \frac{5\phi }{{84}} + \frac{1}{28}} \right), \\ t_{33} & = \frac{{\rho A_{i} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{4} + \frac{8\phi }{{15}} + \frac{1}{7}} \right) + \frac{{\rho A_{j} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} + \frac{\phi }{6} + \frac{3}{35}} \right), \\ t_{34} & = \frac{{ - \rho A_{i} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} + \frac{3\phi }{{20}} + \frac{9}{140}} \right) - \frac{{\rho A_{j} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} + \frac{3\phi }{{20}} + \frac{9}{140}} \right), \\ t_{44} & = \frac{{\rho A_{i} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} + \frac{\phi }{6} + \frac{3}{35}} \right) + \frac{{\rho A_{j} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{4} + \frac{8\phi }{{15}} + \frac{2}{7}} \right), \\ \end{aligned} $$
(51)
$$ [m_{r} ]_{e} = \left[ {\begin{array}{*{20}l} {r_{11} } \hfill & {r_{12} } \hfill & {r_{13} } \hfill & {r_{14} } \hfill \\ {} \hfill & {r_{22} } \hfill & {r_{23} } \hfill & {r_{24} } \hfill \\ {} \hfill & {} \hfill & {r_{33} } \hfill & {r_{34} } \hfill \\ {Sym} \hfill & {} \hfill & {} \hfill & {r_{44} } \hfill \\ \end{array} } \right] $$
(52)
$$ \begin{aligned} r_{11} & = \frac{{\rho I_{i} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{4} + \frac{\phi }{5} + \frac{1}{10}} \right) + \frac{{\rho I_{j} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} - \frac{\phi }{30} + \frac{1}{30}} \right), \\ r_{12} & = \frac{{\rho I_{i} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} - \frac{\phi }{12} - \frac{1}{60}} \right) + \frac{{\rho I_{j} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} - \frac{\phi }{12} - \frac{1}{60}} \right), \\ r_{22} & = \frac{{\rho I_{i} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{12} - \frac{\phi }{30} + \frac{1}{30}} \right) + \frac{{\rho I_{j} L}}{{(1 + \phi )^{2} }}\left( {\frac{{\phi^{2} }}{4} + \frac{\phi }{5} + \frac{1}{10}} \right), \\ r_{13} & = r_{14} = \frac{{\rho I_{i} }}{{(1 + \phi )^{2} }}\left( {\frac{3\phi }{{10}}} \right) + \frac{{\rho I_{j} }}{{(1 + \phi )^{2} }}\left( {\frac{\phi }{5} - \frac{1}{10}} \right), \\ r_{23} & = r_{24} = \frac{{\rho I_{i} }}{{(1 + \phi )^{2} }}\left( {\frac{\phi }{5} - \frac{1}{10}} \right) + \frac{{\rho I_{j} }}{{(1 + \phi )^{2} }}\left( {\frac{3\phi }{{10}}} \right), \\ r_{33} & = r_{34} = r_{44} = \frac{{\rho I_{i} }}{{L(1 + \phi )^{2} }}\left( \frac{3}{5} \right) + \frac{{\rho I_{j} }}{{L(1 + \phi )^{2} }}\left( \frac{3}{5} \right), \\ \end{aligned} $$
(53)

where \(\phi = \frac{12\,EI}{{kGA\,L^{2} }},A_{i} = \frac{{EI_{i} - EI_{j} }}{{EI_{i} + EI_{j} }},\quad \overline{EI} = (EI_{i} + EI_{j} )/2\). We employ the proportional damping matrix as [13]:

$$ C = \varphi^{ - T} C_{{{\text{diagonl}}}} \varphi^{ - 1} ,\;C_{{{\text{diagonl}}}} = {\text{diag}}\left( {\frac{{\omega_{1} }}{{Q_{1} }},\frac{{\omega_{2} }}{{Q_{2} }},\ldots ,\frac{{\omega_{n} }}{{Q_{n} }}} \right),\;\varphi = [\varphi_{1} ,\varphi_{2} ,\ldots ,\varphi_{n} ] $$
(54)
Fig. 27
figure 27

Tapered element

Appendix B. Hamaker constant

Based on the EDLVO principle, \(A_{132}\) as the Hamaker constant between material 1 and 2 in the medium 3 can be expressed as [15]:

$$ A_{132} = \left( {\sqrt {A_{11} } - \sqrt {A_{33} } } \right)\left( {\sqrt {A_{22} } - \sqrt {A_{33} } } \right) $$
(55)

Here, silicon tip has been supposed as the material 2 and polymeric samples are considered as the material 1. Air, water, methanol, and acetone have been used as the medium. Based on [15, 16], Table 8 cab be expressed as:

Table 8 Hamaker constants of materials [25, 26]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, I., Sadeghi, A. Vibrational behavior of atomic force microscope beam via different polymers and immersion environments. Eur. Phys. J. Plus 137, 72 (2022). https://doi.org/10.1140/epjp/s13360-021-02283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02283-1

Navigation