Skip to main content
Log in

Unusual ferrimagnetic ground state in rhenium ferrite

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Through comprehensive density functional calculations, we predict the stability of a rhenium-based ferrite, ReFe2O4, in a distorted spinel-based structure. In ReFe2O4, all Re and half of the Fe ions occupy the octahedral sites while the remaining Fe ions occupy the tetrahedral sites. All Re ions are predicted to be at a + 4 oxidation state with a low spin configuration (S = 3/2), while all Fe ions are predicted to be at a + 2 oxidation state with a high-spin state configuration (S = 2). Magnetically, ReFe2O4 adopts an unconventional ferrimagnetic state in which the magnetic moment of Re opposes the magnetic moments of both tetrahedral and octahedral Fe ions. The spin–orbit coupling is found to cause a slight spin canting of ~ 1.5°. The predicted magnetic ground state is unlike the magnetic alignment usually observed in ferrites, where the tetrahedral cations oppose the spin of the octahedral cations. Given that the density of states analysis predicts a half-metallic character driven by the presence of Re t2g states at the Fermi level, this compound shows promise towards potential spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711

    Article  Google Scholar 

  2. R.K. Kotnala and J. Shah, in Handbook of Magnetic Materials, edited by K. H. J. Buschow (Elsevier, 2015), Vol. 23, pp. 291. https://doi.org/10.1016/B978-0-444-63528-0.00004-8

  3. J.C. Mallinson, The foundations of magnetic recording. (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-466626-9.50008-3

  4. E. Casbeer, V.K. Sharma, X.-Z. Li, Sep. Purif. Technol. 87, 1 (2012). https://doi.org/10.1016/j.seppur.2011.11.034

    Article  Google Scholar 

  5. E. Doustkhah, M. Heidarizadeh, S. Rostamnia, A. Hassankhani, B. Kazemi, X. Liu, Mater. Lett. 216, 139–143 (2018). https://doi.org/10.1016/j.matlet.2018.01.014

    Article  Google Scholar 

  6. E. Doustkhah, S. Rostamnia, J. Colloid Interface Sci. 478, 280–287 (2016). https://doi.org/10.1016/j.jcis.2016.06.020

    Article  ADS  Google Scholar 

  7. S. Rostamnia, E. Doustkhah, J. Magn. Magn. Mater. 386, 111–116 (2015). https://doi.org/10.1016/j.jmmm.2015.03.064

    Article  ADS  Google Scholar 

  8. J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, S.N. Stitzer, IEEE Trans. Microw. Theory Tech. 50(3), 721 (2002). https://doi.org/10.1109/22.989957

    Article  ADS  Google Scholar 

  9. R. Valenzuela, Phys. Res. Int. 2012, 591839 (2012). https://doi.org/10.1155/2012/591839

    Article  Google Scholar 

  10. R.C. Pullar, Prog. Mater. Sci. 57(7), 1191 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  11. J.L. Dormann, M. Nogues, J. Phys. Condens. Matter 2(5), 1223 (1990). https://doi.org/10.1088/0953-8984/2/5/014

    Article  ADS  Google Scholar 

  12. Ü. Özgür, Y. Alivov, H. Morkoç, J. Mater. Sci. Mater. Electron. 20(9), 789 (2009). https://doi.org/10.1007/s10854-009-9923-2

    Article  Google Scholar 

  13. V.G. Harris, A.S. Sokolov, J. Supercond. Nov. Magn. 32(1), 97–108 (2019). https://doi.org/10.1007/s10948-018-4928-9

    Article  Google Scholar 

  14. A.A. Aczel, P.J. Baker, D.E. Bugaris, J. Yeon, H.C. zur Loye, T. Guidi, and D.T. Adroja, Phys. Rev. Lett. 112 (11), 117603 (2014). https://doi.org/10.1103/PhysRevLett.112.117603

  15. S. Fuchs, T. Dey, G. Aslan-Cansever, A. Maljuk, S. Wurmehl, B. Büchner, V. Kataev, Phys. Rev. Lett. 120(23), 237204 (2018). https://doi.org/10.1103/PhysRevLett.120.237204

    Article  ADS  Google Scholar 

  16. N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Adv. Mater. 17(18), 2225–2227 (2005). https://doi.org/10.1002/adma.200500737

    Article  Google Scholar 

  17. R. Morrow, K. Samanta, T. Saha Dasgupta, J. Xiong, J. W. Freeland, D. Haskel, and P. M. Woodward, Chem. Mater. 28 (11), 3666‒3675 (2016). https://doi.org/10.1021/acs.chemmater.6b00254

  18. S.V. Streltsov, D.I. Khomskii, Phys. Usp. 60(11), 1121–1146 (2017). https://doi.org/10.3367/UFNe.2017.08.038196

    Article  ADS  Google Scholar 

  19. A. Bencini and D. Gatteschi, in Electron Paramagnetic Resonance of Exchange Coupled Systems (Springer, Berlin, Germany, 1990), pp. 1‒19. https://doi.org/10.1007/978-3-642-74599-7

  20. P. Hansen, R. Krishnan, J. phys. Colloq. 38(C1), C1147–C1155 (1977). https://doi.org/10.1051/jphyscol:1977130

    Article  Google Scholar 

  21. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1), 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  22. G. Kresse, J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  23. J. Sun, M. Marsman, G.I. Csonka, A. Ruzsinszky, P. Hao, Y.-S. Kim, G. Kresse, and J.P. Perdew, Phys. Rev. B 84 (3), 035117 (2011). https://doi.org/10.1103/PhysRevB.84.035117

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78(7), 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  ADS  Google Scholar 

  26. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52(8), R5467 (1995). https://doi.org/10.1103/PhysRevB.52.R5467

    Article  ADS  Google Scholar 

  27. M. Derzsi, P. Piekarz, P.T. Jochym, J. Łażewski, M. Sternik, A.M. Oleś, K. Parlinski, Phys. Rev. B 79(20), 205105 (2009). https://doi.org/10.1103/PhysRevB.79.205105

    Article  ADS  Google Scholar 

  28. G. Marschick, J. Schell, B. Stöger, J. Gonçalves, M.O. Karabasov, D. Zyabkin, A. Welker, D. Gärtner, I. Efe, R. Santos, Phys. Rev. B 102(22), 224110 (2020). https://doi.org/10.1103/PhysRevB.102.224110

    Article  ADS  Google Scholar 

  29. Y. Meng, X.-W. Liu, C.-F. Huo, W.-P. Guo, D.-B. Cao, Q. Peng, A. Dearden, X. Gonze, Y. Yang, J. Wang, H. Jiao, Y. Li, X.-D. Wen, J. Chem. Theory Comput. 12(10), 5132–5144 (2016). https://doi.org/10.1021/acs.jctc.6b00640

    Article  Google Scholar 

  30. A. Pham, M.H.N. Assadi, A.B. Yu, S. Li, Phys. Rev. B 89(15), 155110 (2014). https://doi.org/10.1103/PhysRevB.89.155110

    Article  ADS  Google Scholar 

  31. M.H.N. Assadi, J.J. Gutiérrez Moreno, and M. Fronzi, ACS Appl. Energy Mater. 3 (6), 5666 (2020). https://doi.org/10.1021/acsaem.0c00640

  32. F. Walz, J. Phys. Condens. Matter 14(12), R285 (2002). https://doi.org/10.1088/0953-8984/14/12/203

    Article  ADS  Google Scholar 

  33. M.H.N. Assadi, H. Katayama-Yoshida, J. Phys. Soc. Jpn. 88(4), 044706 (2019). https://doi.org/10.7566/JPSJ.88.044706

    Article  ADS  Google Scholar 

  34. D.S. Mathew, R.-S. Juang, Chem. Eng. J. 129(1), 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001

    Article  Google Scholar 

  35. P. W. Anderson, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, 1963), Vol. 14, pp. 99. https://doi.org/10.1016/S0081-1947(08)60260-X

  36. M.H.N. Assadi, J.J. Gutiérrez Moreno, D.A.H. Hanaor, and H. Katayama-Yoshida, Phys. Chem. Chem. Phys. 23, 20129‒20137 (2021).

  37. S.K. Banerjee and B.M. Moskowitz, in Magnetite biomineralization and magnetoreception in organisms, edited by J.L. Kirschvink, D.S. Jones, B.J. MacFadden (Springer, Boston, MA, 1985), Vol. 5, pp. 17‒41. https://doi.org/10.1007/978-1-4613-0313-8

  38. A. Bratkovsky, Phys. Rev. B 56(5), 2344–2347 (1997). https://doi.org/10.1103/PhysRevB.56.2344

    Article  ADS  Google Scholar 

  39. A.M. Haghiri-Gosnet, T. Arnal, R. Soulimane, M. Koubaa, J.P. Renard, Phys. Status Solidi A 201(7), 1392–1397 (2004). https://doi.org/10.1002/pssa.200304403

    Article  ADS  Google Scholar 

  40. C.M. Fang, G.A.d. Wijs, and R.A.d. Groot, J. Appl. Phys. 91 (10), 8340‒8344 (2002). https://doi.org/10.1063/1.1452238

  41. X. Hu, Adv. Mater. 24(2), 294–298 (2012). https://doi.org/10.1002/adma.201102555

    Article  Google Scholar 

  42. S.V. Streltsov, D.I. Khomskii, Proc. Nat. Acad. Sci. USA 113(38), 10491 (2016). https://doi.org/10.1073/pnas.1606367113

    Article  Google Scholar 

  43. H.T. Stokes, D.M. Hatch, J. Appl. Crystal. 38(1), 237 (2005). https://doi.org/10.1107/S0021889804031528

    Article  Google Scholar 

  44. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1(1), 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

  45. S.E. Shirsath, X. Liu, M.H.N. Assadi, A. Younis, Y. Yasukawa, S.K. Karan, J. Zhang, J. Kim, D. Wang, A. Morisako, Y. Yamauchi, S. Li, Nanoscale Horiz. 4(2), 434 (2019). https://doi.org/10.1039/C8NH00278A

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding of this project by computing time provided by the Paderborn Center for Parallel Computing (PC2).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

MHNA and DAHH involved in conceptualisation; MHNA and MF involved in methodology; MHNA and MF contributed to software; MHNA, MF, and DAHH involved in writing—original draft preparation; MHNA, MF, and DAHH involved in writing—review and editing; MHNA and DAHH involved in resource acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. Hussein N. Assadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadi, M.H.N., Fronzi, M. & Hanaor, D.A.H. Unusual ferrimagnetic ground state in rhenium ferrite. Eur. Phys. J. Plus 137, 21 (2022). https://doi.org/10.1140/epjp/s13360-021-02277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02277-z

Navigation