Skip to main content
Log in

Hyperbolically symmetric sources, a comprehensive study in f(T) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The theme of this work is to carry a comprehensive analysis on static fluid distribution enclosed with hyperbolically symmetric source in the framework of f(T) gravity as an extension of the work of Herrera et al. (Phys Rev D 103:024037, 2021). We study their physical characteristics in depth. We characterize the stress-energy tensor via thoroughly examining the constituents of the tetrad field in the Minkowski co-ordinate structure and set forth modified field equations. The emergence of negative density implies quantum impacts, as well as extreme limitations, are required to explain any physical implementation for this sort of fluid. Along with this, it is important to note that the region near the center of symmetry is null. This kind of region is designated as a vacuum cavity about the center. We apply the definition of mass and Tolman mass to calculate its value in the f(T) scenario. The value of the mass function is positive, whereas the Tolman mass discloses its negative nature, exhibiting that gravitational interaction is repulsive. Also, we calculate the structure scalars in the f(T) scenario by implying Herrera’s strategy. A standard strategy to attain an accurate solution is given and some accurate analytical solutions are determined in structure of f(T) gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 103, 024037 (2021)

    Article  ADS  Google Scholar 

  2. S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2008)

    Article  ADS  Google Scholar 

  3. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  4. A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)

    Article  Google Scholar 

  5. G.J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Capozziello, V. Faraoni, 170 (Springer, Dordrecht, 2011)

  7. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  10. E. V. Linder, Phys. Rev. D 81, 127301 (2010); Erratum:[Phys. Rev. D 82, 109902 (2010)]

  11. R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011)

    Article  ADS  Google Scholar 

  12. Y. F. Cai, S. Capozziello, M. De. Laurentis, E. N. Saridakis, Rept. Prog. Phys. 79, 106901 (2016)

  13. A. Einstein, Math. Ann. 102, 685 (1930)

    Article  MathSciNet  Google Scholar 

  14. C. Pellegrini, J. Plebánski, K. Dan, Vidensk. Selsk, Mat. Fys. Skr. 2, 2 (1962)

  15. C. Møller, K. Dan, Vidensk. Selsk, Mat. Fys. Skr. 89, 13 (1978)

  16. K. Hayashi, T. Nakano, Prog. Theor. Phys. 38, 491 (1967)

    Article  ADS  Google Scholar 

  17. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Hayashi, T. Shirafuji, Addendum Phys. Rev. D 24, 3312 (1982)

    Article  ADS  Google Scholar 

  19. R. Aldrovandi, J. G. Pereira, (Springer, Dordrecht, 2013)

  20. V.C. De Andrade, L.C.T. Guillen, J.G. Pereira, Phys. Rev. Lett. 84, 4533 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.B. Dent, S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 1101, 009 (2011)

    Article  ADS  Google Scholar 

  22. R. Zheng, Q.G. Huang, J. Cosmol. Astropart. Phys. 1103, 002 (2011)

    Article  ADS  Google Scholar 

  23. K. Izumi, Y.C. Ong, J. Cosmol. Astropart. Phys. 1306, 029 (2013)

    Article  ADS  Google Scholar 

  24. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 104017 (2011)

    Article  ADS  Google Scholar 

  25. B. Basilakos, Phys. Rev. D 93, 083007 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. M.Z. Bhatti, Z. Yousaf, S. Hanif, Phys. Dark Univ. 16, 34 (2017)

    Article  Google Scholar 

  27. M.Z. Bhatti, Z. Yousaf, S. Hanif, Mod. Phys. Lett. A 32, 1750042 (2017)

    Article  ADS  Google Scholar 

  28. M.Z. Bhatti, Z. Yousaf, S. Hanif, Eur. Phys. J. Plus 132, 230 (2017)

    Article  Google Scholar 

  29. G.R. Bengochea, Phys. Lett. B 695, 405 (2011)

    Article  ADS  Google Scholar 

  30. H. Wei, X.P. Ma, H.Y. Qi, Phys. Lett. B 703, 74 (2011)

    Article  ADS  Google Scholar 

  31. S. Capozziello, O. Luongo, E.N. Saridakis, Phys. Rev. D 91, 124037 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. V.K. Oikonomou, E.N. Saridakis, Phys. Rev. D 94, 124005 (2016)

    Article  ADS  Google Scholar 

  33. R.C. Nunes, S. Pan, E.N. Saridakis, J. Cosmol. Astropart. Phys. 1608, 011 (2016)

    Article  ADS  Google Scholar 

  34. L. Iorio, E.N. Saridakis, Mon. Not. Roy. Astron. Soc. 427, 1555 (2012)

    Article  ADS  Google Scholar 

  35. L. Iorio, N. Radicella, M.L. Ruggiero, J. Cosmol. Astropart. Phys. 1508, 021 (2015)

    Article  ADS  Google Scholar 

  36. G. Farrugia, J.L. Said, M.L. Ruggiero, Phys. Rev. D 93, 104034 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Wang, Phys. Rev. D 84, 024042 (2011)

    Article  ADS  Google Scholar 

  38. K. Atazadeh, M. Mousavi, Eur. Phys. J. C 73, 2272 (2013)

    Article  ADS  Google Scholar 

  39. M.L. Ruggiero, N. Radicella, Phys. Rev. D 91, 104014 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. C.G. Böhmer, A. Mussa, N. Tamanini, Class. Quant. Grav. 28, 245020 (2011)

    Article  ADS  Google Scholar 

  41. D. Liu, M.J. Rebouças, Phys. Rev. D 86, 083515 (2012)

    Article  ADS  Google Scholar 

  42. S. Capozziello, V.F. Cardone, H. Farajollahi, A. Ravanpak, Phys. Rev. D 84, 043527 (2011)

    Article  ADS  Google Scholar 

  43. T.P. Sotiriou, B. Li, J.D. Barrow, Phys. Rev. D 83, 104030 (2011)

    Article  ADS  Google Scholar 

  44. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)

    Article  ADS  Google Scholar 

  45. Y.F. Cai, S.-H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Class. Quant. Grav. 28, 215011 (2011)

    Article  ADS  Google Scholar 

  46. S.-H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Phys. Rev. D 83, 023508 (2011)

    Article  ADS  Google Scholar 

  47. K. Bamba, S. D. Odintsov, D. S. G\(\acute{o}\)mez, Phys. Rev. D 88, 084042 (2013)

  48. J.-T. Li, C.-C. Lee, C.-Q. Geng, Eur. Phys. J. C 73, 2315 (2013)

    Article  ADS  Google Scholar 

  49. M. Krššák, E.N. Saridakis, Class. Quant. Grav. 33, 115009 (2016)

    Article  ADS  Google Scholar 

  50. A. Di Prisco, L. Herrera, M. Esculpi, Class. Quant. Grav. 13, 1053 (1996)

    Article  ADS  Google Scholar 

  51. L. Herrera, N.O. Santos, Phys. Rev. D 70, 084004 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  52. L. Herrera, A. Di Prisco, J. Ospino, Gen. Relativ. Gravit. 44, 2645 (2012)

    Article  ADS  Google Scholar 

  53. M. Sharif, Z. Yousaf, Astrophys. Space Sci. 357, 49 (2015)

    Article  ADS  Google Scholar 

  54. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 93, 064059 (2016)

    Article  ADS  Google Scholar 

  55. Z. Yousaf, M.Z. Bhatti, Eur. Phys. J. C 76, 267 (2016)

    Article  ADS  Google Scholar 

  56. M.Z. Bhatti, Z. Yousaf, Int. J. Mod. Phys. D 26, 1750045 (2017)

    Article  ADS  Google Scholar 

  57. M.Z. Bhatti, Z. Yousaf, Z. Tariq, Eur. Phys. J. Plus 136, 857 (2021)

    Article  Google Scholar 

  58. G. Raposo, P. Pani, C. Palenzuela, V. Cardoso, Phys. Rev. D 99, 104072 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  59. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  60. J. Devitt, P.S. Florides, Gen. Relativ. Gravit. 21, 585 (1989)

    Article  ADS  Google Scholar 

  61. L. Herrera, A. Di Prisco, E. Fuenmayor, Class. Quant. Grav. 20, 1125 (2003)

    Article  ADS  Google Scholar 

  62. B.K. Harrison, Phys. Rev. 116, 1285 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  63. T. Madler, Phys. Rev. D 99, 104048 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  64. A. Maciel, M. Le Delliou, J.P. Mimoso, Class. Quant. Grav. 37, 125005 (2020)

    Article  ADS  Google Scholar 

  65. Y.M. Cho, Phys. Rev. D 14, 2521 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  66. L. Herrera, Phys. Rev. D 101, 104024 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  67. H. Bondi, Proc. R. Soc. Lond. A281, 39 (1964)

    ADS  MathSciNet  Google Scholar 

  68. G. Darmois, Mémorial des Sciences Mathématiques, Gautheir-Villars, Fasc. 25, (1927)

  69. W. Israel, Il Nuovo Cimento B 44, 1–14 (1966)

    Article  ADS  Google Scholar 

  70. R. Tolman, Phys. Rev. 35, 875 (1930)

    Article  ADS  Google Scholar 

  71. L. Bel, Ann. Inst. H Poincaré 17, 37 (1961)

    MathSciNet  Google Scholar 

  72. A. García-Parrado Gomez Lobo. arXiv:0707.1475v2

  73. L. Herrera, J. Ospino, A. Di Prisco, E. Fuenmayor, O. Troconis, Phys. Rev. D 79, 064025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  74. M.Z. Bhatti, Z. Yousaf, Z. Tariq, Eur. Phys. J. C 81, 16 (2021)

    Article  ADS  Google Scholar 

  75. M.Z. Bhatti, Z. Tariq, Phys. Dark Univ. 29, 100600 (2020)

    Article  Google Scholar 

  76. L. Herrera, A. Di Prisco, N.O. Santos, Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  77. B Ya. Zeldovich, Zh. Eksp. Teor. Fiz. 41, 1609 (1969)

    Google Scholar 

  78. B Ya. Zeldovich, Sov. Phys. JETP 14, 1143 (1962)

    Google Scholar 

  79. L. Herrera, A. Di Prisco, J. Ospino, L. Witten, Phys. Rev. D 101, 064071 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  80. S. Capozziello, F.S.N. Lobo, J.P. Mimoso, Phys. Lett. B 730, 280 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Capozziello, F.S.N. Lobo, J.P. Mimoso, Phys. Rev. D 91, 124019 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  82. L. Herrera, V. Varela, Phys. Lett. A 189, 11 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  83. A. Papapetrou Letures on General Reaitivity (D.Reidel, Dordrecht-Holland,1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Bhatti.

Appendices

Appendix A

The dark source term is given as

$$\begin{aligned} l_{1}&=-\frac{\nu 'e^{-2\lambda }}{32\pi }\bigg (\frac{\nu '}{4}-\frac{2}{r}\bigg )T'+\frac{\lambda 'e^{-\lambda }}{16\pi } \left[ \left\{ Tf_{T}-f\right\} _{,1}-(Tf_{T}-f)\right] \\&\quad +\frac{e^{-2\lambda }}{r}\left[ \frac{f_{TT}}{16\pi }\bigg (\frac{3}{r}-\nu '\bigg )\right] . \end{aligned}$$

The value for \(\Theta ^{(T)}_{00}\),\(\Theta ^{(T)}_{11}\) \(\Theta ^{(T)}_{22}\) and \(k_1(r)\) is as

$$\begin{aligned} \Theta ^{(T)}_{00}&=\frac{e^{\nu }}{16\pi }\left\{ (Tf_{T}-f)-f_{TT}e^{-\lambda }\bigg (\frac{\nu '}{4}-\frac{2}{r}\bigg )T'\right\} ; \\ \Theta ^{(T)}_{11}&=-\frac{e^{\lambda }}{8\pi }\bigg (\frac{Tf_{T}-f}{2}\bigg ), \\ \Theta ^{(T)}_{22}&=-\frac{r^{2}}{16\pi }\left\{ (Tf_{T}-f)+\frac{f_{TT}}{2}\bigg (\frac{3e^{-\lambda }}{r}-e^{-\lambda }\nu '\bigg )T'\right\} ; \\ K_1(r)&=e^\frac{{(\nu +\lambda })}{2}\bigg (\Theta ^{(T)}_{00}+\Theta ^{(T)}_{11}+\Theta ^{(T)}_{22}\bigg ){\mathrm {d}}\tilde{r}^{3}. \end{aligned}$$

The value of \(\chi _{1}\),\(\chi _{2}\) and \(\chi _{3}\) are as below

$$\begin{aligned} \chi _{1}&=-\frac{4\pi }{f_{T}}\int ^{r}_{0}\bigg (2\Theta ^{(T)}_{00}-\Theta ^{(T)}_{11}+\Theta ^{(T)}_{22}\bigg ){\mathrm {d}}r -4\pi \Theta ^{(T)}_{00}-4\pi \Theta ^{(T)}_{22}\\&\qquad -\frac{1}{4\pi r^{4}}\left\{ k_{1}(r)+\int ^{r}_{0} \left\{ k_1(r){\mathrm {d}}\tilde{r}\right\} _{,1}\right\} , \\ \chi _{2}&=\frac{1}{2}\left\{ \bigg (\frac{Tf_{T}-f}{2}\bigg )\delta _{\delta \gamma }+f_{TT} S_{\delta \gamma \rho }\delta ^{\delta }_{\delta }\delta ^{\rho }_{\rho }\nabla _{\rho }T\right\} \\&\quad +\frac{1}{3}\left\{ \bigg (\frac{Tf_{T}-f}{2}\bigg )-f_{TT}\delta ^{\rho }_{\rho }S^{\delta \rho }\nabla _{\rho }T\right\} \mathfrak {h}_{\delta \gamma }, \\ \chi _{3}&=\frac{1}{2}\left\{ \bigg (\frac{Tf_{T}-f}{2}\bigg )g_{\delta \gamma }-f_{TT}S^{\delta \rho }_{\gamma }g_{\delta \delta } \delta ^{\rho }_{\rho }\nabla _{\rho }T+\frac{f_{TT}}{2}(V_{\gamma }+V_{\delta }-g_{\delta \gamma }V^{\mu })S^{\rho }_{\delta } \nabla _{\rho }T\right\} \\ {}&\quad -\frac{\mathfrak {h}_{\delta \gamma }}{2}\left\{ \bigg (\frac{Tf_{T}-f}{2}\bigg )-f_{TT}S^{\delta \rho }\nabla _{\rho }T\right\} . \end{aligned}$$

The value of \(\Psi _{1}\),\(\Psi _{2}\),\(\Psi _{3}\),\(\Psi _{4}\) \(\Psi _{4i}\) and \(\Psi _{5}\) are given as

$$\begin{aligned} \Psi _{1}&=\frac{1}{9}\left\{ \frac{Tf_{T}-f}{2}-f_{TT}\delta ^{\rho }_{\rho } S^{\delta \rho }\nabla _{\rho }T\right\} ; \\ \Psi _{2}&=\frac{1}{2}\left\{ \frac{Tf_{T}-f}{2}\delta _{\delta \gamma }+f_{TT} S_{\delta \gamma \rho }S^{\rho }_{\delta }\delta ^{\rho }_{\rho }\nabla _{\rho }T\right\} , \\ \Psi _{3}&=-\frac{1}{6}\left\{ \frac{Tf_{T}-f}{2}-f_{TT}S^{\delta \rho }\nabla _{\rho }T\right\} ; \\ \Psi _{4}&=\frac{1}{2}\left\{ (\frac{Tf_T-f}{2})g_{\delta \gamma }-f_{TT}S^{\delta \rho }_{\gamma } g_{\delta \delta }\delta ^{\rho }_{\rho }\nabla _{\rho }T+\frac{f_{TT}}{2}(V_{\gamma }+V_{\delta }-g_{\delta \gamma }V^{\mu })S^{\rho }_{\delta } \nabla _{\rho }T\right\} , \\ \Psi _{4i}&=-4\pi \Theta ^{(T)}_{00}-4\pi \Theta ^{(T)}_{22}-\frac{1}{4\pi r^{4}}\left\{ k_{1}(r)+\int ^{r}_{0}k_{1}(r){\mathrm {d}}\tilde{r}\right\} ; \\ \Psi _{6}&=\left\{ (Tf_{T}-f)+\frac{f_{TT}}{2}\bigg (\frac{2m}{r}-1\bigg )\bigg (3-2(2z-1\bigg )\bigg (\frac{2m}{r}-1)\bigg )T'\right\} . \end{aligned}$$

Appendix B

The value of \(\tau _{1}\), \(\tau _{2}\), \(\tau _{3}\), \(\tau _{4}\), \(\tau _{5}\) and \(\tau _{6}\) are as

$$\begin{aligned} \tau _{1}&=\frac{24}{r^{4}(9g-4)^{2}}\left[ 2\frac{Tf_{T}-f}{f_{T}}+\bigg (\frac{Tf_{T}-f}{f_{T}}\bigg )'\right] \\ {}&\quad +\frac{6}{r^{3}(2g-1)(9g-4)^{2}f_{T}}\left[ \frac{-2gg'(Tf_{T}-f)}{r} +\frac{(Tf_{T}-f)^{2}}{f_{T}}\right] , \\ \tau _{2}&=\frac{r^{2}(Tf_{T}-f)}{2f_{T}}\left\{ \frac{(Tf_{T}-f)}{8(2g-1)f_{T}}+3g-1\right\} ; \\ \tau _{3}&=-\frac{1}{16\pi }\left\{ (Tf_{T}-f)-f_{TT}(2g-1)\bigg (\frac{\tau _{2}}{4\beta g^{2}(2g-1)}-\frac{2}{r}\bigg )T'\right\} \\ \tau _{4}&=-\bigg (\frac{3r\lambda '}{2}\frac{-2g'}{(2g-1)}-1 +r\bigg )r^{2}\frac{Tf_{T}-f}{f_{T}}-r^{3}\bigg (\frac{Tf_{T}-f}{f_{T}}\bigg )' -\frac{r^{4}}{2f_{T}^{2}}\bigg (\frac{Tf_T-f}{2g-1}\bigg )^{2}, \\ \tau _{5}&=\bigg (\frac{gr}{(2g-1)^{2}}+g(g-1)-\frac{g'r}{4(2g-1)^{2}}\bigg )+\frac{Tf_{T}-f}{f_{T}}-\frac{r}{4(2g-1)} \bigg (\frac{Tf_{T}-f}{f_{T}}\bigg )'\\ {}&\quad +\frac{r^{2}}{8(2g-1)^{3}} \bigg (\frac{Tf_{T}-f}{f_{T}}\bigg )^{2}+\frac{r^{2}}{f_{T}}\left\{ (Tf_{T}-f)\right. \\&\left. \quad +\frac{f_{TT}}{2}(2g-1)\bigg (\frac{3}{r} +\frac{2g}{r(2g-1)}+\frac{r(Tf_{T}-f)}{2f_{T}(2g-1)^{2}}\bigg )T'\right\} , \\ \tau _{6}&=\frac{f_{T}}{8\pi }\left[ \frac{-r}{2(2g-1)}\bigg (\frac{Tf_{T}-f}{f_{T}}\bigg )' +\bigg (\frac{1}{2(2g-1)}+2g'(2g-1)r\right. \\ {}&\quad \left. +\frac{r^{2}}{8f_{T}(2g-1)^{4}}-\frac{1}{(2g-1)^{2}}\bigg )(\frac{Tf_{T}-f}{f_{T}})\right] -\Theta ^{(T)}_{00}. \end{aligned}$$

The value of \(\zeta _{1}\), \(\zeta _{2}\), \(\zeta _{3}\), \(\zeta _{4}\), \(\zeta _{5}\) and \(\zeta _{6}\) is as given

$$\begin{aligned} \zeta _{1}&=-\frac{4\pi r^{2}}{f_{T}}\int ^{r}_{0}\bigg (\frac{l_{1}r}{3(8\pi )^{2}}-\frac{r^{2}}{(8\pi )^{2}} \int ^{r}_{0}\frac{r^{3}l_{1}'}{3}dr+\frac{r^{2}\Theta ^{(T)}_{00}}{f_{T}}\bigg ){\mathrm {d}}r; \\ \zeta _{2}&=\frac{r l_{1}}{3(8\pi )^{2}}-\frac{r^{2}}{(8\pi )^{2}}\int ^{r}_{0}\frac{r^{3}l_{1}'}{3}{\mathrm {d}}r, \\ \zeta _{3}&=\int \left[ \frac{8\zeta _{2}}{r}+6\int \bigg (\frac{\zeta _{2}}{r^{2}}+\frac{l_{1}'}{(8\pi )^{2}}\bigg ){\mathrm {d}}r\right] ; \\ \zeta _{4}&=4\pi \int ^{r}_{0}\left( \frac{r^{2}\Theta ^{(T)}_{00}}{f_{T}}-\frac{\zeta _{3}r^{2}}{f_{T}}-\bigg (rd -\frac{r^{3}c}{3}\bigg )\bigg (\frac{1}{f_{T}}\bigg )'\right) {\mathrm {d}}r, \\ \zeta _{5}&=-\frac{4\pi d}{r^{2}_{\Xi ^e}}\int ^{r}_{0}\bigg (r r^{2}_{\Xi ^e}-\frac{r^{3}}{3}\bigg )\bigg (\frac{1}{f_{T}}\bigg )'{\mathrm {d}}r +4\pi d\int ^{r}_{0}\bigg (2\zeta _{3}+\frac{r^{2}\Theta ^{(T)}_{00}}{f_{T}}\bigg ){\mathrm {d}}r; \\ \zeta _{6}&=r(\zeta _{3}+\zeta _{3}')-\frac{d}{r^{2}_{\Xi ^e}}+\frac{rl_{1}}{2(8\pi )^{2}}. \end{aligned}$$

The value of \(\nu '\) is as below

$$\begin{aligned} \nu '=\frac{\frac{8\pi }{f_{T}}(rd-\zeta _{3}r^{3})-\frac{16\pi c r^{3}}{3f_{T}}(1+r\Theta ^{(T)}_{11}-\frac{8\pi rd}{f_{T}}(2r^{2}\Theta ^{(T)}_{11}+1)+2\zeta _{4}(1-2r^{2}\Theta ^{(T)}_{11})-2r^{3}\Theta ^{(T)}_{11}}{r(\frac{8\pi rd}{f_{T}}-\frac{8\pi r^{3}c}{3}+2\zeta _{4}-r)^{2}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.Z., Yousaf, Z. & Hanif, S. Hyperbolically symmetric sources, a comprehensive study in f(T) gravity. Eur. Phys. J. Plus 137, 65 (2022). https://doi.org/10.1140/epjp/s13360-021-02274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02274-2

Navigation