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Abstract The identification of textile fibres from cultural property provides information
about the object’s technology. Today, microscopic examination remains the preferred method,
and molecular spectroscopies (e.g. Fourier transform infrared (FTIR) and Raman spectro-
scopies) can complement it but may present some limitations. To avoid sampling, non-
invasive fibre optics reflectance spectroscopy (FORS) in the near-infrared (NIR) range showed
promising results for identifying textile fibres; but examining and interpreting numerous
spectra with features that are not well defined is highly time-consuming. Multivariate clas-
sification techniques may overcome this problem and have already shown promising results
for classifying textile fibres for the textile industry but have been seldom used in the heritage
science field. In this work, we compare the performance of two classification techniques,
principal component analysis–linear discrimination analysis (PCA-LDA) and soft indepen-
dent modelling of class analogy (SIMCA), to identify cotton, wool, and silk fibres, and
their mixtures in historical textiles using FORS in the NIR range (1000–1700 nm). We built
our models analysing reference samples of single fibres and their mixtures, and after the
model calculation and evaluation, we studied four historical textiles: three Persian carpets
from the nineteenth and twentieth centuries and an Italian seventeenth-century tapestry. We
cross-checked the results with Raman spectroscopy. The results highlight the advantages and
disadvantages of both techniques for the non-invasive identification of the three fibre types
in historical textiles and the influence their vicinity can have in the classification.

1 Introduction

During historical and archaeological textiles examination, fibre identification is fundamental
to understand the constitutive materials, and technology. Historical textiles were generally
obtained using yarns of a single type of fibre, with some exceptions of blended yarns, e.g.
the wool blends (more than one type of wool) from medieval textiles [1] or the hop and hemp
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blend identified in a nineteenth century garment [2]. However, textiles containing more than
one type of yarns for the weft and warp, such as silk–wool satin [3] or the complex structures
of some tapestries made of wool, silk, and metal threads [4], are more frequent and require
a detailed identification of the constitutive materials.

Despite the advances and availability of several analytical techniques, microscopic exam-
ination of fibre samples, both in longitudinal and cross-sectional views, remains the most
widespread method [5–7]. The chemical and microstructural information (i.e. polymeric
orientation and crystallinity) obtained with micro Fourier transform infrared (μ-FTIR, espe-
cially in attenuated total reflectance (ATR) mode) and micro Raman spectroscopies (μ-
Raman) complement the microscopic observations and report about the condition of the
fibres [8–11]. However, the successful application of μ-FTIR in reflection mode may be
limited due to the beam scattering producing data complex to interpret, poorly reproducible,
and the superficial deposits on the fibres may produce interference. Additionally, the pression
caused by the ATR crystal can damage fragile samples [12]. FTIR in transmission mode for
fibres thicker than 30 μm in diameter may be burdensome due to the absorption of the infrared
radiation resulting in spectra complex to interpret [13]. When examining dyed textiles with
Raman spectroscopy, fluorescence emission may hinder the characteristic bands of the fibre
[14]. Despite the broad absorption bands and their overlapping, benchtop near-infrared (NIR)
spectrophotometry combined with multivariate analysis provides qualitative and quantitative
information about textile fibres and their blends and is widely used in the textile industry [8,
15, 16]. Being X–H bonds (e.g. X=O, N, C) vibrationally active in the NIR region, they may
be efficiently exploited for the textile fibres classification [8].

Microscopic techniques generally require fibre samples (few millimetres), not always
available for historical or archaeological textiles, and provide local information. On the other
hand, non-invasive methods such as external reflection FTIR and handheld portable NIR
spectrometry—based on miniaturized technology that may impact on the instrumental per-
formance (e.g. noisier detectors and lower spectral resolution) [17]—proved suitable for
the identification of fibres without sampling [18–21] as well as fibre optics reflectance spec-
troscopy (FORS) in the NIR region [22, 23]. The latter relies on the use of optic fibres to carry
the reflected light (UV, Vis, and NIR), and generally employ better performance components
(e.g. InGaAs detectors) [24]. Exploiting the characteristic vibrational features in the NIR
region, our research group classified wool and silk fibres in a seventeenth-century tapestry
with the ratios of the marker bands (1507/1536 nm, 1507/1575 nm, and 1536/1575 nm) [25],
Delaney et al. [26] mapped, with reflectance imaging spectroscopy (RIS), the wool and the
silk fibres in tapestries. Depending on the spectral range, NIR spectroscopy may offer some
information on the degradation of the fibres but only when reaching to the 2200–2300 nm
spectral region [4, 27].

When dealing with big data, the examination of every single spectrum represents a highly
time-consuming task. Additionally, the NIR spectra broad features hardly offer a straight-
forward and unambiguous interpretation. Multivariate classification techniques may over-
come this problem by building mathematical models, based on the spectral information, and
identifying classes or groups by coding their similarities [28, 29]. A consistent number of
publications report on NIR spectroscopy and classification techniques for identifying tex-
tile fibres, both natural and synthetic, and their blends, particularly for industrial applications
[15, 30–33]. For example, Howell and Davis [34] exploited Mahalanobis distances to classify
four different synthetic fibres while Jasper and Kovacs [35] neural networks for classifying
17 fibre types. They point out the difficulties to correctly differentiate between cotton and
linen. Soft independent modelling of class analogy (SIMCA) was employed to classify non-
blended fibres, both natural and synthetic [16], and compared with other methods—partial
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least squares discriminant analysis (PLS-DA) [31] and linear discriminant analysis (LDA)
[30]. The fibre blends remain the main classification challenge. In this respect, multilinear
regressions (MLR), extreme learning machine (ELM), and partial least square (PLS) pre-
dicted efficiently the fibre content in blended yarns with both natural and synthetic fibres [32,
36, 37].

The NIR spectroscopy combined with classification techniques is an established approach
in industrial domain, whereas in the heritage science field a lower number of publications
is available [4, 8, 20, 38]. For this reason, our scope was to compare the performance of
two classification techniques, principal component analysis–linear discrimination analysis
(PCA-LDA) and soft independent modelling of class analogy (SIMCA), to identify cotton,
wool, and silk and their blends in historical textiles in a transportable, fast, and non-invasive
way using FORS, in the 1000–1700 nm range, a technique easily accessible to the heritage
professionals. We used cotton, wool, and silk samples, unaged and naturally and artificially
aged (for 37 years and with Xenon test, respectively), and their respective blends for the
training and test datasets. After the model calculation and evaluation, we analysed four
historical textiles: three Persian carpets from the nineteenth and twentieth centuries and
an Italian seventeenth-century tapestry. We discuss the PCA-LDA and SIMCA methods
performance in terms of accuracy, sensitivity, and precision, cross-checking the outcomes
with μ-Raman spectroscopy. The results highlight the advantages and limitations of each
technique and the complexity of their application to real objects where there are several
factors that influence the outcome of the classification.

2 Material and methods

2.1 Sample preparation and artificial ageing

Our training and test datasets included spectra from four silk, four wool, and three cotton types
of fibres, the most common yarns in tapestries and carpets production since the ancient times,
(Table 1) available in the sample database of the Laboratory of Conservation of Tapestries
and Carpets from the Opificio delle Pietre Dure. We subdivided the fibres into three groups
according to their characteristics: (a) unaged commercial fibres (UA), (b) fibres undyed (NA-
UD) and dyed (NA-D) with natural dyes (yellow, red, blue, purple, and green) following
historical recipes (Table SI1) naturally aged for 37 years, and c) fibres dyed, with natural
and synthetic dyes, and artificially aged (Xenon test) (AA-D). Only for the cotton fibres,
undyed samples artificially aged were available (AA-UD). The fibre blends simulate roughly
a 50–50% proportion between the two fibre types (silk–wool, cotton–wool, cotton–silk).

The artificial ageing of some of the samples was performed in 1984 using a Xenon test
machine model 150 following the standard UNI 7639/1989. The light source produced irra-
diation in the visible (400–700 nm) and UV (300–400 nm) range (temp. 5500–6500 K), and
seven IR filters were used to imitate solar radiation filtered through a window (DIN 54 004).
The exposure time was 100 h and the temperature of the black panel was 50 °C; the relative
humidity was 40%.

2.2 FORS measurements

Fibre optics reflectance spectroscopy (FORS) measurements were performed with a Zeiss
multi-channel spectrometer (MCS) including Vis–NIR (MCS521) and NIR 17 (MCS511)
modules, operating in the spectral range 304–1700 nm with a resolution of 3 nm in the
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Table 1 Samples used for spectral measurements

Fibre Aging Dyeing Description

Wool Unaged Undyed Commercial wool. 3 threads, S-twist, Nm: 3/175

Naturally aged Undyed and dyed “Venezia” weft. 2 threads, S-twist, Nm: 2/26.22

Naturally aged Undyed “Siena” weft. 2 threads, S-twist, Nm: 2/10000

Naturally aged Undyed Warp “Grosso.” 3 threads, S-twist, Nm: 3/8000

Artificially aged Dyed “Venezia” weft. 2 threads, S-twist, Nm: 2/26.22

Silk Unaged Undyed Commercial silk

Naturally aged Undyed Bourette. Fibre obtained from silk scraps, 2 threads,
S-twist, Nm: 2/36

Naturally aged Undyed Shappe. Fibre obtained from silk scraps, 2 threads

Naturally aged Undyed and dyed Ritorta. 6 filaments×2 threads, S-twist

Artificially aged Dyed Ritorta. 6 filaments×2 threads, S-twist

Cotton Unaged Undyed Commercial cotton. 3 threads, S-twist

Naturally aged Undyed and dyed Cordonnet threat. Nm 3/54.27 (tex 18.42×3)

Artificially aged Undyed and dyed Cordonnet threat. Nm 3/54.27 (tex 18.42×3)

visible and 6 nm in the near-infrared (NIR) range. Eleven acquisitions on a slightly different
spot were recorded for each sample, using a 45°/0° lighting/detection geometry, a spot size
of 3 mm in diameter, and a 100% reflecting reference Spectralon®. Each measurement is a
mean of 3 acquisitions on the same spot. Data were processed through an in-house software,
providing CIE-L*a*b* coordinates with standard D65 illuminant and 2° observer and a mean
spectrum (out of 11 different acquisitions) for each type of sample; the reflectance intensity
standard deviation in the range 1000–1700 nm was around 2–5% for cotton, 5% for wool,
and 8–14% for silk. It should be pointed out that the rugosity of the textile surface influences
the reflectance variability.

2.3 Classification techniques

The performance of PCA-LDA and SIMCA classification techniques was evaluated on two
datasets, one containing the single fibres (S) and the other also their mixtures (B) (~ 50/50
ratio). For modelling, the measurements were divided into the training and test sets (Table 2).
The type of sample (i.e. dyed or aging type) is not indicated here since it does not interfere
in the classification for the given spectral range (1000–1700 nm). The matrix dimensionality
is represented in Eq. 1:

X �
⎛
⎜⎝

x1,1 · · · x1,i
...

. . .
...

xN ,1 · · · xN ,i

⎞
⎟⎠, (1)

where N represents the total number of reflectance spectra (Table 2) in the matrix (X) and i
corresponds to the 1–117 reflectance values measured in the range 1000–1700 nm.
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Table 2 Number of spectra (N) in training and test sets

Data set Abbreviation Fibre Training set Test set

Single fibres S Wool 230 230

Silk 168 152

Cotton 87 76

Total 485 458

Single fibres and their blends B Wool 230 236

Silk 168 160

Cotton 87 76

Silk–wool 20 20

Cotton–wool 18 22

Cotton–silk 24 21

Total 547 535

2.3.1 Principal component analysis–linear discrimination analysis (PCA-LDA)

To calculate LDA model with the Chemometric Agile Tool (CAT) [39], we first reduced
the datasets size (i.e. training, test, and real samples) with PCA. We calculated the principal
components (PCs) using the 1000–1700 nm reflectance spectra, and we selected the number
of PCs based on the minimum number required to obtain the minimum classification error
in the LDA model to avoid over-fitting. We employed 10 and 20 PCs, respectively, for the
dataset with single fibres and with single and mixed fibres. We applied standard normal variate
(SNV) to all the spectra to correct baseline shifts, intensity variations and reduce systematic
error. We employed a column centring correction before the PCA model calculation.

We used the scores obtained from the PCA analysis as input for the LDA model calculation,
the latter using five segments for cross-validation and 100 randomizations.

2.3.2 Soft independent modelling of class analogy (SIMCA)

For the SIMCA classification, we exploited the classification toolbox for MATLAB [40].
We calculated the model for each class (cotton, wool, or silk and their mixtures) using the
number of PCs required to achieve the lower error rate; autoscaling was performed before
the model calculation and validated using a Venetian blind cross-validation method with five
segments. SIMCA classification offered four possible results: (a) correctly classified in one
group, (b) classified in more than one group with one correct classification, (c) classified in
more than one group with no correct classification, (d) and classified as unknown samples
(not belonging to any of the groups) [16].

2.3.3 Model performance estimations

The results of the classification are summarised in a confusion matrix where the rows indicate
the class to which the samples belong while the columns the class assigned by the model [28].
To estimate and compare the performance of both the classification techniques, we calculate
the accuracy, sensitivity, efficiency, precision, and specificity (Eq. SI1-5) [28, 41]. Specificity
was calculated only for the test set predictions. For the SIMCA model, some of the values
were calculated automatically by the toolbox.
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Fig. 1 Historical textiles used for the FORS multivariate fibre classification: a nineteenth century carpet
fragment, b samples coming from the two twentieth century Persian carpets, c Italian seventeenth-century
tapestry by Pierre Lefèbvre

2.4 Historical samples

After model calculation and evaluation, we classified FORS spectra from three historical
Persian carpets and one historical tapestry (Fig. 1) using both models. We studied a fragment
of carpet used as a patch for a Ferahan Persian carpet (Farāhān region, Iran, beginning
of nineteenth century) from the Museum-Gallery Mozzi Bardini in Florence. Spectra were
collected from both sides of the carpet fragment and in different colour areas. Additionally, we
studied knot samples from two Persian carpets, an Adobe design carpet from the Bakhtiari-
Esfahan region (Iran), dating from 1950 to 1960, and a Border design carpet from the Esfahan
region (Iran), dating from 1920. The samples were kindly donated by Dr Ina Vanden Berghe
and Zohreh Chahardoli and previously studied at the KIK-IRPA [42]. Finally, we used the
spectra obtained from the tapestry (private collection, 1652) made by the French weaver
settled in Florence Pierre Lefèbvre (also known as Pietro Févère). The tapestry is based on
Rubens’ painting Madonna of the Basket today at the Galleria Palatina in Florence [25].

We divided the data from the historical cases into two matrices, one for the carpets and
the other for the tapestry (Table 3). We added some spectra of the reference fibres to achieve
a similar distribution to the training set in the multivariate space.

2.5 μ-Raman spectroscopy

The recognition of the fibres in the historical textiles was performed using a μ-Raman Ren-
ishaw inVia Raman confocal microscope equipped with a Leica DM2700 optical microscope
and a solid-state 785 nm excitation source. After the observation of the sample under the
microscope, we focused the laser on a single fibre to perform the measurements in the
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Table 3 Number of spectra contained in each dataset from historical samples

Dataset Spectra Composition Additional reference spectra Total

Tapestry 40 Silk 12 wool 52

Carpet 15 Wool (7) and
cotton–wool
mixture (8)

24 wool 39

100–3200 cm−1 spectral range, using a 1200 l/mm grating, and a thermoelectrically cooled
CCD detector (spectral range 400–1060 nm) with a spectral resolution of 1 cm−1 per CCD
pixel (functional resolution of 3 cm−1). The laser power was 9 mW, with typically 10 s
integration times and 20 accumulations. Data were collected with a 50× long distance mag-
nification (NA Plan � 0.5; theoretical spot size at 785 nm � 0.95 μm) and processed with
Wire5.1 and OriginPro software.

3 Results

3.1 NIR spectra

Figure 2 shows the reflectance spectra of cotton, wool, and silk in the range 800–1700 nm
(12,500–5882.35 cm−1). The absorption bands and their proposed assignments [22, 26, 30,
31] are summarised in Table 4. Apart from some minor variation in reflectance intensity, the
spectra are reproducible and dye and ageing does not influence significantly the spectra in the
range studied. The bands 1505 nm, 1537 nm, and 1576 nm allowed discriminating between
the two proteinaceous fibres, particularly in the region 1500–1600 nm (7143–6250 cm−1).
The band at 1486 nm (6729 cm−1) from the first overtone of the O–H stretching from semi-
crystalline cellulose characterises cotton fibres.

On the other hand, the measurements obtained from the mixed samples exhibit contribution
of particular features of each fibre (Fig. 2d). Silk–wool blend shows an intensity increase
of the band at 1395 nm (7168 cm−1) related to the adsorbed water present on both fibres
(Fig. 2b, c and Table 4) [8]. The characteristic bands of silk (1540 nm and 1580 nm) are
evident in both the silk–wool and cotton–silk blends, while the band at 1497 nm from cotton
is present in its two blends.

3.2 Principal component analysis

We exploited the PCA to explore the data by recording the variance and by reducing their
dimension for the LDA model calculation. We calculated 10 principal components (PCs)
that explained 99.4% of the variance (Table SI2) of the training set and 99.5% of the test
set containing single fibres. The dataset containing both the single fibres and their blends
required the calculation of 20 PCs that explained 99.6% of the variance of both the training
and test sets. The score plot of the first three PCs (Fig. 3), explaining, respectively, 57.4%,
20.8%, and 10.9% variance of the dataset with the three single fibres, showed an evident
clustering phenomenon. PC1 described the difference between the proteinaceous (wool and
silk) and the cellulosic (cotton) fibres, while PC2 and PC3 the one between wool and silk
(Fig. 3). The dispersion in the multivariate space of some points of silk and cotton is related
to the variability in the intensity of the adsorbed water band (1395 nm) in silk and to the
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Fig. 2 NIR reflectance spectra, in the 800–1700 nm range, of the different types of a cotton, b wool, and c silk
samples, and the spectra measured from their blends. UA � unaged, NA-UD � undyed fibres naturally aged,
NA-D � dyed fibres naturally aged, AA-UD � undyed fibres artificially aged, AA-D � dyed fibres artificially
aged

spectrum slope at around 1300 nm in cotton measures (Figs. 2a, c) rather than differences in
the chemical composition.

When the mixtures of fibres are added, the score plot (Fig. 3b) showed a less defined
separation; however, the distribution of the single fibres remained almost unaltered and the
different mixtures distributed along the main two fibres (Fig. 3b). There is some overlapping
between the mixtures and the single fibres as a result of a similar composition and the effect of
a dominant contribution of one fibre in the mixture. Particularly, the measurements obtained
from the cotton–silk mixture exhibited a trend towards the wool cluster. These particular
issues may complicate their classification.

3.3 Evaluation of classification techniques

Based on error rate values in cross-validation (Fig. SI1), we used 10 PCs for both PCA-LDA
(error rate 0%) model of the single fibres dataset and 20 PCs for the model including the
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Table 4 Band assignment of NIR spectra from silk and wool fibres

Fibre Bands Assignment Reference

cm−1 nm

Wool 6361 1572 4th overtone of tertiary amide [43]

6658 1502 O–H from adsorbed water and aminoacids, 1st overtone of N–H [30, 44]

6831 1464 1st overtone of N–H, 3rd overtone of C=O [30]

7133 1402 1stovertone of O–H stretching vibration of water [45]

8410 1189 3rd overtone C–H [45]

Silk 6345 1576 Amide groups in β-sheet, O–H and N–H overtones and combination
bands

[8, 26]

6506 1537 1st overtone amide A stretching N–H amorphous [23, 27]

6658 1502 N–H stretching from Amide A crystalline and 1st overtone stretching
Amide II. Amide groups in β-sheet

[26, 27]

7153 1398 1stovertone of O–H stretching vibration of water [45]

8292 1206 3rd overtone C–H [45]

Cotton 8190 1221 2nd overtone C–H stretching CH and CH2 from cellulose [46, 47]

7962 1256 2nd overtone C–H stretching CH and CH2 from cellulose [46, 47]

6729 1486 1st overtone OH stretching from semi-crystalline cellulose [46, 47]

Fig. 3 Score plots PC 1, 2, and 3: a single fibres and b single fibres and their blends training sets. The first
three PCs allowed separating the three fibres while the blends show a less defined separation; however, the
distribution of the single fibres remains unvaried while the blend measurements distribute between the two
main fibre clusters (arrows)

fibre blends (error rate 5.29%). The SIMCA model showed an average lower error rate for
both datasets; however, the advantage of SIMCA technique is the possibility to calculate the
model based on a target class, and therefore, the error rate varied according to the target and
the number of PCs selected (Table SI3). The class with the higher error rate was cotton–wool
(6.95%, 11 PCs), while cotton, wool, and silk showed the lower error rates (< 1%) for the
two datasets.
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Fig. 4 Correct prediction percentage from a PCA-LDA and b SIMCA models calculated for the dataset
containing single fibres and their mixtures

The PCA-LDA percentage of correct predictions (Fig. 4a) for the training set (confusion
matrix in Fig. SI4) decreases from 100 to 95.7% in presence of the mixed samples. In the
test set, this drop is even more evident (from 100% to 34.6%). The model works the best
for the wool (96.2%) while cotton and wool-silk were the less correctly predicted classes
(0%). As shown in Table SI5, the incorrect predictions are related to the contribution of the
single fibres in the mixtures and the overlapping of the classes. For example, 52 silk samples
were classified as cotton–silk and 1 as wool-silk or 9 wool-silk spectra as wool and 7 as silk.
Silk and cotton are the most problematic to differentiate as previously reported by Davis and
colleagues [16].

For SIMCA model (Figs. SI6 and SI7), the average correct prediction is comparable for
the training set with the single fibres (99.8%) with that containing also mixtures (97.5)%
(Fig. 4b). Similar results were obtained from the test sets, the correct predictions dropped
minimally from 98% for the single fibre to 91.6% for the mixtures. These results show that
the tailored selection of the number of PCs for the SIMCA model calculation based on the
target class clearly allows for its better performance.

The differences in terms of accuracy, sensitivity, precision, specificity, and efficiency
between the two techniques are negligible in the training set (Fig. SI2), while in the test set
SIMCA showed a better performance (Fig. SI2b), especially in case of the mixtures (SIMCA
scores 91.71% efficiency while PCA-LDA 56.4%). This is as a result of the detailed selection
of adequate number of PCs for the model calculation for each class. SIMCA is also more
sensitive (87.16% vs 34.96% of PCA-LDA), meaning it performs better in correctly assigning
samples to a target class and excluding samples that do not make part of it. As mentioned
before, the dye or aging did not influence any of the classifications.

3.3.1 Classification of historical samples

The spectra from the four historical textiles were divided in two datasets: one for the car-
pets and another for the tapestry, as input for developed models. Their performance varied
considerably according to the matrix analysed. PCA-LDA model of single fibres correctly
classified all the samples from the seventeenth century tapestry, which was the simplest case
of study since the points analysed were made exclusively using silk fibres. Figure 5 shows
the Mahalanobis distances between each tapestry spectra and the mean distribution of each
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Fig. 5 Mahalanobis distances from the tapestry spectra obtained from the PCA-LDA model of single fibres

class. Silk is the closest class to all of the spectra. On the contrary, the SIMCA model showed
a lower performance (Fig. SI8), it classified correctly only 3 of 40 spectra as silk, while 26
were classified as wool and 11 were not classified in any class.

The carpet dataset was more complex. The detailed examination of the nineteenth cen-
tury Persian carpet fragment using μ-Raman indicated that the carpet structure was made
with cotton (Fig. 6a), as suggested by the bands at 1377 cm−1, 1339 cm−1 from δ(CH2),
1150 cm−1 from ν(CC) ring breathing, 1122 cm−1, 1097 cm−1 from ν(COC) glycosidic link,
and 379 cm−1 from δ(CCC) ring deformation [48]; the knots, on the other hand, are made
of wool (Fig. 6b), the characteristic bands at 1652 cm−1 from the ν(CO) from the amide I,
1447 cm−1, 1315 cm−1from the δ(CH2), 1003 cm−1 from ν(CC) aromatic, and 938 cm−1

assigned to ρ(CH3) terminal and ν(CC) [14]. The NIR spectra indeed showed the contribution
of both cotton and wool (Fig. 6c). Indeed, cotton was used in the structure of Persian carpets
(see Fig. 6d) from the nineteenth century and it is still used today for their production [49,
50].

Because of the complexity of the sample, we used the models calculated considering the
single fibres and their mixtures. The PCA-LDA model (Fig. 7) showed promising results
since seven of the spectra from the 19th-century carpet fragment were classified as cotton
and one spectrum was classified as cotton–silk. Regarding the knot samples, two spectra
were correctly classified as wool, two were classified as wool–cotton, and three as silk.

The SIMCA showed better results (Fig. 7) when using the model calculated only with
single fibres. It classified as wool seven of the 15 samples. Particularly, the spectra obtained
from the knot samples. The other 8 samples were not assigned to a class. On the contrary,
the model based on the spectra containing single fibres and their mixtures failed to classified
all the spectra from the carpet, which were not assigned to any class.

4 Discussion

Both techniques have similar performance (100% of correct prediction for PCA-LDA and
99.8% for SIMCA) when the dataset is relatively simple and contains well-defined classes.
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Fig. 6 μ-Raman spectra of the nineteenth century Persian carpet fragment: a from the fibres of the carpet
structure compared to the cotton reference and cotton references, b from the knots fibres compared to wool
fibre reference. c NIR spectrum from a red area of the nineteenth century Persian compared to wool. d Carpet
structure

However, for more complex systems, in which the delimiters between classes are not well
defined in the multivariate space, PCA-LDA showed a lower performance. The training and
test sets results show that the main advantage of SIMCA, in comparison with PCA-LDA, is
the possibility to calculate a tailored model for a specific target class, by selecting the number
of PCs require to achieve the minimum error rate, thanks to the model calculation based only
on sample that belong to the target class. As the training set results suggest, SIMCA may
be very useful when the classes have a complex distribution in the multivariate space (e.g.
mixed samples).

The application of both techniques to classify mixed fibres in real cases showed some
limitations. For a single fibre type, e.g. tapestry, PCA-LDA performed better because the
simple definition of delimiters between classes allowed to achieve a higher sensitivity. On
the contrary, when the delimiters between classes are not well defined, i.e. dataset containing
also the fibre mixtures, the performance of PCA-LDA is reduced considerably (Figs. 4 and
SI2).

Our results pointed out the problems in the classification in presence of more fibre types.
Even though we built models also considering mixtures, the contribution of each fibre varies
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Fig. 7 Scheme of the classification results obtained from the Carpets dataset

according to the position of the spectrometer and the construction of the textile. Therefore, it is
very difficult to account for this variability and to control the exact percentage of contribution
of each fibre. However, the achieved results are promising as PCA-LDA allowed not only
to correctly classify single fibres and also cotton–wool and cotton–silk mixtures (Fig. 7). In
contrast, in all the historical samples, SIMCA was unable to correctly classify the sample,
probably as a result of a high specificity (Fig. 7). Our future work will thus focus on improving
the applicability to real cases by introducing a higher variability of samples to calculate the
model.

5 Conclusions

This work has highlighted the advantages and disadvantages of two classification techniques
(PCA-LDA and SIMCA) for the non-invasive classification of cotton, wool, and silk fibres
and their mixtures in historical textiles using the FORS in the NIR (1000–1700 nm) range.
Despite the well-known applicability of these techniques in the industry, a limited number
of publications report on this methodology for the identification (e.g. MANOVA or PLS
techniques) of textile fibres in heritage science, while PCA, which is not a classification
technique, has been used more often to explore the data.

Our approach showed a good performance for both techniques when single fibres are anal-
ysed; however, when mixtures are included SIMCA showed the best performance. Despite
this good performance on model samples, the study of historical samples revealed complex
and showed that it is necessary to calculate a model with a high sensitivity and a lower speci-
ficity in order to manage to include the variations present in the real case not considered in
the initial model.

The results suggest that PCA-LDA is a powerful tool when studying textiles with a rela-
tively simple structure, while objects with a more complex composition, for example, embroi-
dery or tapestries, require models built considering a higher variability and the influence of
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the different material vicinity, thus a SIMCA model with a low specificity but high sensitivity
can be the most adequate.

Our results showed that FORS—nowadays accessible to several cultural heritage insti-
tutions for various applications (e.g. colour measurements and material identification)—in
NIR range, even considering only a reduced number of wavelengths (1000–1700 nm), is a
promising tool for the characterization of textile fibres. The non-invasiveness of the technique
allows extending the number of measurements and increasing the statistics and representa-
tiveness of the results compared to other spectroscopic techniques that require samples. It is
a useful exploration tool to understand the homogeneity of the textiles, identified possible
modification or unnoticed differences and select and reduce the sampling areas.
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