Skip to main content
Log in

Towards a physical interpretation of the deformation parametrization in nonextensive statistics

Evidence for a generalization of the number of degrees of freedom in a nonextensive gas of charged particles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explore new ways to interpret the role played by the deformation q-parameter in nonextensive statistics. A generalized polytropic \(\gamma \)-index is deduced with basis on the Tsallis distribution. In the limit \(q\rightarrow 1/3\), it is shown that the \(\gamma \)-index decreases hyperbolically with the increase of the concentration n of charged particles in a nonextensive gas. An equation of state of a nonextensive system is derived following the generalized polytropic index. In the limit \(q\rightarrow 1/3\), it is found that a constant and uniform isotropic pressure develops throughout a nonextensive gas of charged particles in the absence of electric and magnetic fields, and in a stationary state of equilibrium of the system. The usual reduction of the Tsallis to Kappa distributions is examined with basis on their corresponding equations of state. It is shown that such a procedure leads to a general proof of the relationship between the q-parameter and spectral \(\kappa \)-index, and between the T-Maxwellian and \(\Theta \)-Kappa temperatures. A generalization of the number of degrees of freedom in a nonextensive gas is provided. It is suggested that a nonextensive polytropic process might characterize a system that shall be something between a monoatomic gas with more than three translational degrees of freedom, and a diatomic gas with less than three translational plus two rotational degrees of freedom. Moreover, it is proved that the restriction of the Tsallis to Kappa distributions requires that the bulk concentration n in a nonextensive gas does not exceed 50% of the concentration \(n_0\) on its boundary, thereby characterizing a low-density system. Possible applications of our theory to anisotropic structures are briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analysed in this study.

References

  1. C. Tsallis, What are the numbers that experiments provide? Quim. Nova 17, 468 (1994)

    Google Scholar 

  2. S. Umarov, C. Tsallis, S. Steinberg, On a \(q\)-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 76, 307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. H.S. Lima, C. Tsallis, Exploring the neighborhood of \(q\)-exponentials. Entropy 22, 1402 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K. Huang, Statistical mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  6. J.A.S. Lima, R. Silva, A.R. Plastino, Nonextensive thermostatistics and the \(H\)-theorem. Phys. Rev. Lett. 86, 2938 (2001)

    Article  ADS  Google Scholar 

  7. F.M. Ramos, R.R. Rosa, L.A.W. Bambace, Nonextensive thermostatistics and the \(H\)-theorem revisited. Phys. A 344, 626 (2004)

    Article  MathSciNet  Google Scholar 

  8. R. Silva, D.H.A.L. Anselmo, J.S. Alcaniz, Nonextensive quantum \(H\)-theorem. Europhys. Lett. 89, 10004 (2010)

    Article  ADS  Google Scholar 

  9. E.P. Borges, C. Tsallis, G.F.J. Añaños, P.M.C. de Oliveira, Nonequilibrium probabilistic dynamics of the logistic map at the edge of chaos. Phys. Rev. Lett. 89, 254103 (2002)

    Article  ADS  Google Scholar 

  10. R.K. Saxena, A.M. Mathai, H.J. Haubold, Astrophysical thermonuclear functions for Boltzmann-Gibbs statistics and Tsallis statistics. Phys. A 344, 649 (2004)

    Article  Google Scholar 

  11. L. Borland, Closed form option pricing formulas based on a non-Gaussian stock price model with statistical feedback. Phys. Rev. Lett. 89, 098701 (2002)

    Article  ADS  Google Scholar 

  12. M. Ausloos, F. Petroni, Tsallis non-extensive statistical mechanics of El Niño southern oscillation index. Phys. A 373, 721 (2007)

    Article  Google Scholar 

  13. E. Lutz, F. Renzoni, Beyond Boltzmann-Gibbs statistical mechanics in optical lattices. Nat. Phys. 9, 615 (2013)

    Article  Google Scholar 

  14. M.I. Bogachev, A.R. Kayumov, A. Bunde, Universal internucleotide statistics in full genomes: a footprint of the DNA structure and packaging? PLOS ONE 9, e112534 (2014)

    Article  ADS  Google Scholar 

  15. G. Combe, V. Richefeu, M. Stasiak, A.P.F. Atman, Experimental validation of nonextensive scaling law in confined granular media. Phys. Rev. Lett. 115, 238301 (2015)

    Article  ADS  Google Scholar 

  16. A. Deppman, E. Megias, D.P. Menezes, Fractals, non-extensive statistics, and QCD. Phys. Rev. D 101, 034019 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968)

  18. D. Summers, R.M. Thorne, The modified plasma dispersion function. Phys. Fluids B 3, 1835 (1991)

    Article  ADS  Google Scholar 

  19. V. Pierrard, M. Lazar, Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153 (2010)

    Article  ADS  Google Scholar 

  20. S.P. Christon, A comparison of the Mercury and Earth magnetospheres: electron measurements and substorm time scales. Icarus 71, 448 (1987)

    Article  ADS  Google Scholar 

  21. B.H. Mauk, D.G. Mitchell, R.W. McEntire, C.P. Paranicas, E.C. Roelof, D.J. Williams, S.M. Krimigis, A. Lagg, Energetic ion characteristics and neutral gas interactions in jupiter’s magnetosphere. J. Geophys. Res. Space Phys. 109, A09S12 (2004)

  22. P. Schippers, M. Blanc, N. André, I. Dandouras, G.R. Lewis, A.M. Persoon, L.K. Gilbert, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res. 113, A07208 (2008)

  23. K. Dialynas, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, P.C. Brandt, Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. J. Geophys. Res. 114, A01212 (2009)

  24. G. Gloeckler, J. Geiss, Interstellar and inner source pickup ions observed with Swics on Ulysses. Space Sci. Rev. 86, 127 (1998)

    Article  ADS  Google Scholar 

  25. K. Chotoo, A. Schwadron, G.M. Mason, T.H. Zurbuchen, G. Gloeckler, L.A. Fisk, A. Posner, A.B. Galvin, D.C. Hamilton, M.R. Collier, The suprathermal seed population for corotating interaction region ions at 1 AU deduced from composition and spectra of H\(^{+}\), He\(^{++}\), and He\(^{+}\) observed on Wind. J. Geophys. Res. 105, 23107 (2000)

  26. G. Mann, H.T. Classen, E. Keppler, E.C. Roelof, On electron acceleration at CIR related shock waves. Astron. Astrophys. 391, 749 (2002)

    Article  ADS  Google Scholar 

  27. M. Maksimovic, I. Zouganelis, J..-Y. Chaufray, K. Issautier, E..E.. Scime, J..E.. Littleton, E. Marsch, D..J. McComas, C. Salem, R..P. Lin, H. Elliot, Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, A09104 (2005)

    ADS  Google Scholar 

  28. E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1 (2006)

    Article  ADS  Google Scholar 

  29. R.B. Decker, S.M. Krimigis, Voyager observations of low-energy ions during solar cycle 23. Adv. Space Res. 32, 597 (2003)

    Article  ADS  Google Scholar 

  30. R.B. Decker, S.M. Krimigis, E.C. Roelof, M.E. Hill, T.P. Armstrong, G. Gloeckler, D.C. Hamilton, L.J. Lanzerotti, Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020 (2005)

    Article  ADS  Google Scholar 

  31. D.J. McComas, N. Alexander, F. Allegrini, F. Bagenal, C. Beebe, G. Clark, F. Crary, M.I. Desai, A. De Los Santos, D. Demkee, J. Dickinson, D. Everett, T. Finley, A. Gribanova, R. Hill, J. Johnson, C. Kofoed, C. Loeffler, P. Louarn, M. Maple, W. Mills, C. Pollock, M. Reno, B. Rodriguez, J. Rouzaud, D. Santos-Costa, P. Valek, S. Weidner, P. Wilson, R.J. Wilson, D. White, The jovian auroral distributions experiment (JADE) on the juno mission to jupiter. Space Sci. Rev. 213, 547 (2013)

    Article  ADS  Google Scholar 

  32. T.K. Kim, R.W. Ebert, P.W. Valek, F. Allegrini, D.J. McComas, F. Bagenal, J.E. Connerney, G. Livadiotis, M.F. Thomsen, R.J. Wilson, S.J. Bolton, Survey of ion properties in jupiter’s plasma sheet: juno JADE-1 observations. J. Geophys. Res. Space Phys. 125, 4 (2020)

  33. Livadiotis, G.: Statistical Background of Kappa Distributions: Connection with Nonextensive Statistical Mechanics. In: Kappa Distributions: Theory and Applications in Plasmas, ed. by G. Livadiotis. Elsevier, Amsterdam (2017)

  34. G. Nicolaou, G. Livadiotis, Statistical uncertainties of space plasma properties described by Kappa distributions. Entropy 22, 541 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. M.P. Leubner, A nonextensive entropy appoach to Kappa distributions. Astrophys. Space Sci. 282, 573 (2002)

    Article  ADS  Google Scholar 

  36. M.P. Leubner, Core-halo distribution functions: a natural equilibrium state in generalized thermostatistics. Astrophys. J. 604, 469 (2004)

    Article  ADS  Google Scholar 

  37. M.P. Leubner, Fundamental issues on Kappa-distributions in space plasmas and interplanetary proton distributions. Phys. Plasmas 11, 1308 (2004)

    Article  ADS  Google Scholar 

  38. M.P. Leubner, Z. Voros, A nonextensive entropy approach to solar wind intermitency. Astrophys. J. 618, 547 (2005)

    Article  ADS  Google Scholar 

  39. G. Livadiotis, D.J. McComas, Beyond Kappa distributions: exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105 (2009)

    ADS  Google Scholar 

  40. G. Livadiotis, Thermodynamic origin of Kappa distributions. Europhys. Lett. 122, 50001 (2018)

    Article  ADS  Google Scholar 

  41. M.A. Hellberg, R.L. Mace, T.K. Baluku, I. Kourakis, N.S. Saini, Comment on mathematical and physical aspects of Kappa velocity distribution. Phys. Plasmas 16, 94701 (2009)

    Article  Google Scholar 

  42. M. Lazar, H. Fichtner, P.H. Yoon, On the interpretation and applicability of \(\kappa \)-distributions. Astron. Astrophys. 549, A39 (2016)

    Article  Google Scholar 

  43. M. Lazar, V. Pierrard, S.M. Shaaban, H. Fichtner, S. Poedts, Dual Maxwellian-Kappa modeling of the solar wind electrons: new clues on the temperature of Kappa populations. Astron. Astrophys. 602, A44 (2017)

    Article  ADS  Google Scholar 

  44. A.R. Plastino, A. Plastino, Stellar polytropes and Tsallis entropy. Phys. Lett. A 174, 384 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  45. C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics. Phys. A 261, 534 (1998)

    Article  Google Scholar 

  46. L.S.F. Olavo, Possible physical meaning of the Tsallis entropy parameter. Phys. Rev. E 64, 036125 (2001)

    Article  ADS  Google Scholar 

  47. R. Silva, J.S. Alcaniz, Non-extensive statistics and the stellar polytrope index. Phys. A 341, 208 (2004)

    Article  MathSciNet  Google Scholar 

  48. E.P. Bento, J.R.P. Silva, R. Silva, Non-Gaussian statistics, Maxwellian derivation and stellar polytropes. Phys. A 392, 666 (2013)

    Article  MathSciNet  Google Scholar 

  49. F.E.M. Silveira, R.S. Camargo, I.L. Caldas, Concentration discontinuity of alkalies at high pressures. Phys. Lett. A 395, 127207 (2021)

    Article  Google Scholar 

  50. F.E.M. Silveira, M.H. Benetti, I.L. Caldas, Equation of state of the kappa-distributed solar wind particles in the earth’s magnetopause. Sol. Phys. 296, 113 (2021)

  51. F.F. Chen, Introduction to plasma physics and controlled fusion, 3rd edn. (Springer, Cham, 2018)

    Google Scholar 

  52. R. Silva, A.R. Plastino, J.A.S. Lima, A Maxwellian path to the \(q\)-nonextensive velocity distribution function. Phys. Lett. A 249, 401 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J.A.S. Lima, R. Silva, J. Santos, Plasma oscillations and nonextensive statistics. Phys. Rev. E 61, 3260 (2000)

    Article  ADS  Google Scholar 

  54. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables (Dover, New York, 1972)

    MATH  Google Scholar 

  55. R. Amour, L.A. Gougam, M. Tribeche, Dressed ion-acoustic soliton in a plasma with electrons featuring Tsallis distribution. Phys. A 436, 856 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Rehman, J.K. Lee, Electron acoustic waves in a plasma with a \(q\)-nonextensive distribution of electrons. Phys. Plasmas 25, 022107 (2018)

    Article  ADS  Google Scholar 

  57. F.E.M. Silveira, M.H. Benetti, I.L. Caldas, K.N.M.M. Santos, Description limit for soliton waves due to critical scaling of electrostatic potential. Phys. Plasmas 28, 092115 (2021)

    Article  ADS  Google Scholar 

  58. G. Livadiotis, Introduction to special section on origins and properties of Kappa distributions: statistical background and properties of Kappa distributions in space plasmas. J. Geophys. Res. 120, 1607 (2015)

    Article  Google Scholar 

  59. G.P. Horedt, Polytropes: applications in astrophysics and related fields (Kluwer, Dordrecht, 2004)

    Google Scholar 

  60. M. Moncuquet, F. Bagenal, N. Meyer-Vernet, Latitudinal structure of outer Io plasma torus. J. Geophys. Res. 107, 1260 (2002)

    Article  Google Scholar 

  61. G. Livadiotis, On the origin of polytropic behavior in space and astrophysical plasmas. Astrophys. J. 874, 10 (2019)

    Article  ADS  Google Scholar 

  62. G. Livadiotis, G. Nicolaou, F. Allegrini, Anisotropic Kappa distributions. I. Formulation based on particle correlations. Astrophys. J. Suppl. Ser. 253, 16 (2021)

  63. G. Livadiotis, G. Nicolaou, Relationship between polytropic index and temperature anisotropy in space plasmas. Astrophys. J. 909, 127 (2021)

    Article  ADS  Google Scholar 

  64. G. Livadiotis, D.J. McComas, Black-body radiation in space plasmas. Europhys. Lett. 135, 49001 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F. E. M. Silveira is partially supported by São Paulo Research Foundation (FAPESP) under Grant Number 17/20192-2. M. H. Benetti is supported by Federal University of ABC (UFABC) under a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. M. Silveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, F.E.M., Benetti, M.H. Towards a physical interpretation of the deformation parametrization in nonextensive statistics. Eur. Phys. J. Plus 136, 1212 (2021). https://doi.org/10.1140/epjp/s13360-021-02233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02233-x

Navigation