Skip to main content
Log in

Effect of delay and control on a predator–prey ecosystem with generalist predator and group defence in the prey species

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Generalist predators consist an important component of an ecosystem which may act as a biocontrol agent and influence the dynamics significantly. In this paper, we have studied the effect of delayed logistic growth of the prey species with group defence behaviour. The Lyapunov stability criteria for the interior equilibrium point is derived. Also, the condition of Hopf bifurcation and the point of bifurcation are obtained. The length of the delay is also estimated for the system to preserve stability. Numerical simulations are performed and illustrated to support the obtained analytical results. Using a feedback control mechanism, the stability of the unstable equilibrium point is restored. Latin hypercube sampling/partial rank correlation coefficient (LHS/PRCC) sensitivity analysis, which is an efficient tool often employed in uncertainty analysis, is used to explore the entire parameter space of a model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

Not applicable.

References

  1. R.G. Van Driesche, R.I. Carruthers, T. Center, M.S. Hoddle, J. Hough-Goldstein, L. Morin, R.D. Van Klinken, Classical biological control for the protection of natural ecosystems. Biol. Control 54, S2–S33 (2010)

    Article  Google Scholar 

  2. C.E. Causton, Dossier on Rodolia cardinalis Mulsant (Coccinellidae: Cocinellinae), a potential biological control agent for the cottony cushion scale, Icerya purchasi Maskell (Margarodidae) (Charles Darwin Research Station, Galápagos Islands, 2001)

  3. W.O.C. Symondson, K.D. Sunderland, M.H. Greenstone, Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 47(1), 561–594 (2002)

    Article  Google Scholar 

  4. C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly (1959)

  5. J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  6. D.L. DeAngelis, R.A. Goldstein, R.V. O’Neill, A model for trophic interaction. Ecology 56, 881–892 (1975)

  7. R. Arditi, L.R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)

    Article  ADS  Google Scholar 

  8. M.P. Hassell, G.C. Varley, New inductive population model for insect parasites and its bearing on biological control. Nature 223(5211), 1133–1137 (1969)

    Article  ADS  Google Scholar 

  9. X. Tian, R. Xu, Global dynamics of a predator-prey system with Holling type II functional response. Nonlinear Anal. Model. Control 16(2), 242–253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Liu, K. Zhang, Y. Ye, Y. Wei, M. Ma, Dynamic complexity and bifurcation analysis of a host-parasitoid model with Allee effect and Holling type III functional response. Adv. Differ. Equ. 2019(1), 1–20 (2019)

    Article  MathSciNet  Google Scholar 

  11. T.T. Li, F.D. Chen, J.H. Chen, Q.X. Lin, Stability of a stage-structured plant-pollinator mutualism model with the Beddington-DeAngelis functional response. Nonlinear Funct. Anal., 2017 (2017)

  12. S. Gakkhar, Chaos in three species ratio dependent food chain. Chaos Solitons Fract. 14(5), 771–778 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C. C. Ioannou, Grouping and predation. Encycl. Evolut. Psychol. Sci. 1-6 (2017)

  14. C. Cosner, D.L. DeAngelis, J.S. Ault, D.B. Olson, Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    Article  MATH  Google Scholar 

  15. J.S. Tener, Muskoxen in Canada: A biological and taxonomic review (Queens Printer, Ottawa, 1965)

    Google Scholar 

  16. P. Davidowicz, Z.M. Gliwicz, R.D. Gulati, Can Daphnia prevent a blue-green algal bloom in hypertrophic lakes? Limnologica 19(2), 21–26 (1988)

    Google Scholar 

  17. J.C. Holmes, W.M. Bethel, Modification of intermediate host behaviour by parasites. Suppl. I Zool. J. Linnean Soc. 51, 123–149 (1972)

    Google Scholar 

  18. J.F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10(6), 707–723 (1968)

    Article  Google Scholar 

  19. V.H. Edwards, The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 12(5), 679–712 (1970)

    Article  Google Scholar 

  20. B. Boon, H. Laudelout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem. J. 85(3), 440–447 (1962)

    Article  Google Scholar 

  21. V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems. Nonlinear Anal. Real World Appl. 12(4), 2319–2338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.A. Braza, Predator-prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl. 13(4), 1837–1843 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Djilali, Impact of prey herd shape on the predator-prey interaction. Chaos Solitons Fract. 120, 139–148 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S.A.H. Geritz, M. Gyllenberg, Group defence and the predators functional response. J. Math. Biol. 66(4), 705–717 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Kumar, N. Kumari, Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response. Chaos Solitons Fract. 147, 110964 (2021)

    Article  MathSciNet  Google Scholar 

  26. W. Sokol, J.A. Howell, Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng. 23(9), 2039–2049 (1981)

    Article  Google Scholar 

  27. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Vol. 74) (Springer, New York, 1992)

    Book  MATH  Google Scholar 

  28. D. Ding, X. Qian, W. Hu, N. Wang, D. Liang, Chaos and Hopf bifurcation control in a fractional-order memristor-based chaotic system with time delay. Eur. Phys. J. Plus 132(11), 1–12 (2017)

    Article  Google Scholar 

  29. A.C. Fowler, An asymptotic analysis of the delayed logistic equation when the delay is large. IMA J. Appl. Math. 28(1), 41–49 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Sun, H. Cao, Bifurcations and chaos of a delayed ecological model. Chaos Solitons Fract. 33(4), 1383–1393 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. R.M. May, Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)

    Article  ADS  MATH  Google Scholar 

  32. S. Kundu, S. Maitra, Dynamical behaviour of a delayed three species predator-prey model with cooperation among the prey species. Nonlinear Dyn. 92(2), 627–643 (2018)

    Article  MATH  Google Scholar 

  33. G.E. Hutchinson, Circular causal systems in ecology. Ann. NY Acad. Sci. 50(4), 221–246 (1948)

    Article  ADS  Google Scholar 

  34. R.K. Upadhyay, R. Agrawal, Dynamics and responses of a predator-prey system with competitive interference and time delay. Nonlinear Dyn. 83(1), 821–837 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.D. Murray, Mathematical Biology I. An Introduction (Vol. 17) (Springer, New York, 2002)

    Google Scholar 

  36. H.Y. Alfifi, Stability and Hopf bifurcation analysis for the diffusive delay logistic population model with spatially heterogeneous environment. Appl. Math. Comput. 408, 126362 (2021)

    MathSciNet  MATH  Google Scholar 

  37. National Geograpic. https://www.nationalgeographic.org/encyclopedia/generalist-and-specialist-species/

  38. D. Xiao, S. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. P.H. Leslie, Some further notes on the use of matrices in population mathematics. Biometrika 35(3/4), 213–245 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  40. M.A. Aziz-Alaoui, M.D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16(7), 1069–1075 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Batabyal, D. Jana, J. Lyu, R.D. Parshad, Explosive predator and mutualistic preys: A comparative study. Phys. A 541, 123348 (2020)

    Article  MathSciNet  Google Scholar 

  42. J. M. Morales-Saldaña, K. B. Herman, P. A. Mejía-Falla, A. F. Navia, E. Areano, C. G. A. Castillo, M. Espinoza, A. Cevallos, A. G. Pestana, A. González, J. C. Pérez-Jiménez, X. Velez-Zuazo, P. Charvet, P. M. Kyne, Eastern Pacific Round Rays, Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 9780124095489. https://doi.org/10.1016/B978-0-12-821139-7.00122-7 (2021)

  43. S. Kundu, S. Maitra, Dynamics of a delayed predator-prey system with stage structure and cooperation for preys. Chaos Solitons Fract. 114, 453–460 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. R. Kaviya, P. Muthukumar, Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration. Eur. Phys. J. Plus 136(5), 1–18 (2021)

    Google Scholar 

  45. S. Kundu, S. Maitra, Stability and delay in a three species predator-prey system. In: AIP Conference Proceedings, vol.1751, p. 020004. AIP Publishing (2016)

  46. M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  47. D.M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32(2), 135–154 (1994)

    Article  Google Scholar 

  48. S. S. Nadim, S. Samanta, N. Pal, I. M. ELmojtaba, I. Mukhopadhyay, J. Chattopadhyay, Impact of predator signals on the stability of a Predator-Prey System: A Z-control approach. Differ. Equ. Dyn. Syst. 1-17 (2018)

  49. C. Loehle, Control theory and the management of ecosystems. J. Appl. Ecol. 43(5), 957–966 (2006)

    Article  Google Scholar 

  50. Y. Zhang, X. Yan, B. Liao, Y. Zhang, Y. Ding, Z-type control of populations for Lotka-Volterra model with exponential convergence. Math. Biosci. 272, 15–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. L.H. Erbe, H.I. Freedman, V.S.H. Rao, Three-species food-chain models with mutual interference and time delays. Math. Biosci. 80(1), 57–80 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Bandyopadhyay, S. Banerjee, A stage-structured prey-predator model with discrete time delay. Appl. Math. Comput. 182(2), 1385–1398 (2006)

    MathSciNet  MATH  Google Scholar 

  53. C. Rutz, R.G. Bijlsma, Food-limitation in a generalist predator. Proc. R. Soc. B Biol. Sci. 273(1597), 2069–2076 (2006)

    Article  Google Scholar 

  54. C.C. Jaworski, A. Bompard, L. Genies, E. Amiens-Desneux, N. Desneux, Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS ONE 8(12), e82231 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very much thankful to the anonymous reviewers for their insightful comments and suggestions, which helped us to improve the manuscript considerably and further open doors for future work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, R.R., Kundu, S. & Maitra, S. Effect of delay and control on a predator–prey ecosystem with generalist predator and group defence in the prey species. Eur. Phys. J. Plus 137, 28 (2022). https://doi.org/10.1140/epjp/s13360-021-02225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02225-x

Navigation