Skip to main content
Log in

Combined effects of electric, magnetic, and intense terahertz laser fields on the nonlinear optical properties in GaAs/GaAlAs quantum well with exponentially confinement potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We are presenting a theoretical investigation on the effects of applied electric, magnetic, and non-resonant intense laser field on the coefficients of intersubband linear, third-order nonlinear, and total optical absorption and of relative refractive index change in GaAs/GaAlAs quantum wells with exponentially confining potential. It also includes the study of the impact of adjustable potential parameters. The energy states of conduction band electrons in the structure are calculated by using the effective mass and envelope function approximations. With regard to the optical response, it is found that with the strengthening of magnetic field, the resonant peak positions shift to lower energies and their magnitudes decrease. Increasing in the values of adjustable potential parameters as well as of the static electric and laser intensities causes the peak positions to shift toward higher energies and their magnitudes to augment. These results show that the optical properties of the system can be adjusted according to the purpose, by changing the magnitude of applied external fields and structure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Available

This manuscript has non-associated data or the data will not be deposited. [Authors’ comment: No data was needed to perform this research. This work is new and all the results are computed from the equations.]

References

  1. S. Badreddine, B.A. Marwa, I. Demir, S. Faouzi, O. Zied, D. Brahim, I. Altuntas, S. Elagoz, H. Fredj, M. Hassen, Optical and structural properties of in-rich ingaas epitaxial layers on (100) inp for swir detectors. Mater. Sci. Eng. B 262, 114769 (2020)

    Article  Google Scholar 

  2. M. Fox, R. Ispasoiu, Quantum Wells, Superlattices, and Band-Gap Engineering (Springer, Cham, 2017), pp. 1–1

    Google Scholar 

  3. E. Rosencher, B. Vinter, Optoelectronics (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  4. L. Bosco, M. Franckie, G. Scalari, M. Beck, A. Wacker, J. Faist, Thermoelectrically cooled thz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 115, 010601 (2019)

    Article  ADS  Google Scholar 

  5. B. Levine, Quantum-well infrared photodetectors. J. Appl. Phys. 74, R1–R81 (1993)

    Article  ADS  Google Scholar 

  6. L. Wang, T.-T. Lin, K. Wang, T. Grange, S. Birner, H. Hirayama, Short-period scattering-assisted terahertz quantum cascade lasers operating at high temperatures. Sci. Rep. 9, 1–7 (2019)

    ADS  Google Scholar 

  7. B.O. Alaydin, Effect of high bandgap alas quantum barrier on electronic and optical properties of ingaas/alinas superlattice under applied electric field for laser and detector applications. Int. J. Mod. Phys. B 35, 2150027 (2021)

    Article  ADS  Google Scholar 

  8. B.O. Alaydin, Optical properties of gaas/algaas superlattice under electric field for quantum cascade laser application. Gazi Univ. J. Sci. 1, 1 (2021)

    Google Scholar 

  9. O. Ozturk, E. Ozturk, S. Elagoz, The effect of intense laser field on the nonlinear optical features in asymmetric multiple step and inverse v-shaped multiple step quantum wells. Lazer Phys. 29, 105401 (2019)

    Article  ADS  Google Scholar 

  10. E.B. Al, E. Kasapoglu, S. Sakiroglu, C.A. Duque, I. Sokmen, Binding energy of donor impurity states and optical absorption in the tietz-hua quantum well under an applied electric field. J. Mol. Struct. 1157, 288–291 (2018)

    Article  ADS  Google Scholar 

  11. O. Aytekin, S. Turgut, M. Tomak, Nonlinear optical properties of a Pöschl–Teller quantum well under electric and magnetic fields. Phys. E 44, 1612–1616 (2012)

    Article  Google Scholar 

  12. C.A. Duque, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sokmen, Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field. Appl. Surf. Sci. 257, 2313–2319 (2011)

    Article  ADS  Google Scholar 

  13. M. Karimi, A. Keshavarz, Second harmonic generation in asymmetric double semi-parabolic quantum wells: effects of electric and magnetic fields, hydrostatic pressure and temperature. Phys. E 44, 1900–1904 (2012)

    Article  Google Scholar 

  14. X. Liu, L. Zou, C. Liu, Z.-H. Zhang, J.-H. Yuan, The nonlinear optical rectification and second harmonic generation in asymmetrical gaussian potential quantum well: effects of hydrostatic pressure, temperature and magnetic field. Opt. Mater. 53, 218–223 (2016)

    Article  ADS  Google Scholar 

  15. Y. Liu, Y. Yu, The electronic states and the optical absorption for an asymmetrical quantum well applied with an external electric field. Int. J. Mod. Phys. B 33, 1950301 (2019)

    Article  ADS  Google Scholar 

  16. C. Zhang, C. Min, B. Zhao, Optical absorption coefficients in asymmetric quantum well. Phys. Lett. A 383, 125983 (2019)

    Article  MathSciNet  Google Scholar 

  17. Z.-H. Zhang, J.-H. Yuan, K.-X. Guo, The combined influence of hydrostatic pressure and temperature on nonlinear optical properties of gaas/gaalas morse quantum well in the presence of an applied magnetic field. Materials 11, 668 (2018)

    Article  ADS  Google Scholar 

  18. Z.-H. Zhang, L. Zou, K.-X. Guo, J.-H. Yuan, The nonlinear optical rectification in asymmetrical and symmetrical Gaussian potential quantum wells with applied electric field. Opt. Commun. 359, 316–321 (2016)

    Article  ADS  Google Scholar 

  19. F. Ungan, M.K. Bahar, K.A. Rodríguez-Magdaleno, M.E. Mora-Ramos, J.C. Martínez-Orozco, Influence of applied external fields on the nonlinear optical properties of a semi-infinite asymmetric algaas/gaas quantum well. Mater. Sci. Semicond. Process. 123, 105509 (2021)

    Article  Google Scholar 

  20. J.-F. You, Q. Zhao, Z.-H. Zhang, J.-H. Yuan, K.-X. Guo, E. Feddi, The effect of temperature, hydrostatic pressure and magnetic field on the nonlinear optical properties of algaas/gaas semi-prabolic quantum well. Int. J. Mod. Phys. B 33, 1950325 (2019)

    Article  ADS  Google Scholar 

  21. A.D. Alhaidari, Exponentially confining potential well. J. Theor. Math. Phys. 205 (2020) (in press) arXiv preprint arXiv:2005.09080

  22. I. Assi, A. Sous, H. Bahlouli, The energy spectrum of a new exponentially confining potential. Eur. Phys. J. Plus 135, 937 (2020)

    Article  Google Scholar 

  23. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. daSilva, Jr., Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. J. Appl. Phys. 105, 123111 (2009)

  24. E. Rosencher, P. Bois, Model system for optical nonlinearities: asymmetric quantum wells. Phys. Rev. B 44, 11315 (1991)

    Article  ADS  Google Scholar 

  25. F. Ungan, U. Yesilgul, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Nonlinear optical absorption and refractive index in gainnas/gaas double quantum wells under intense laser field and applied electric field. J. Lumin. 143, 75–80 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

MEMR acknowledges Mexican Conacyt for support through Grant A1-S-8218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ungan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntas, I., Dakhlaoui, H., Mora-Ramos, M.E. et al. Combined effects of electric, magnetic, and intense terahertz laser fields on the nonlinear optical properties in GaAs/GaAlAs quantum well with exponentially confinement potential. Eur. Phys. J. Plus 136, 1174 (2021). https://doi.org/10.1140/epjp/s13360-021-02180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02180-7

Navigation