Skip to main content
Log in

Holographic Fisher information metric in Schrödinger spacetime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we study the Fisher information metric on the space of the coupling constants on both sides of the duality between non-relativistic dipole field theories and string theory in Schrödinger spacetime. We consider the following setup. In the gauge theory side one can deform a given conformal field theory by a proper scalar operator and compute the quantum information metric via the two-point correlation function between two such operators. On the string side the deformation corresponds to a scalar field probing the background. In the large N limit of the theory the probing can be done without backreaction on the original spacetime, thus one can construct a perturbative scheme for the calculation of the dual holographic Fisher information metric as shown by [1]. Considering the asymptotic behaviour of the holographic Fisher information metric close to the boundary of the Schrödinger spacetime we show that its divergence structure exactly matches its dual quantum counterpart up to the leading order, thus extending the holographic setup up to the non-relativistic case. One should note that the existence of other terms is not seen from the boundary theory to this level of approximation. Their behaviour near the boundary, however, is pointing what kind of information from the boundary theory is missing to be able to reconstruct the bulk. Obviously, more work is needed to refine and elucidate their meaning and interrelations in holographic setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. We will refer to t as the real time and \(\tau =-it\) as the Wick-rotated time.

  2. In general, we consider the situation where the original Lagrangian \({\mathcal {L}}_0\) has an explicit dependence on a number of physical parameters \(\lambda ^a\), \(a=1,\dots , n\), thus one can deform the theory by multiple operators with corresponding real coupling constants \(\lambda ^a\rightarrow \lambda ^a+\delta \lambda ^a\). However, it will be qualitatively informative to consider only one such deformation.

  3. In general, the complex quantity \(G_{ab}\) is called the quantum geometric tensor. Its real part is the quantum information metric and its imaginary part is known as the Berry curvature. Usually, the quantum Fisher information metric is defined to be 4 times the quantum information metric, \(F_{ab}=4\mathfrak {R}{(G_{ab})}\). However, with a slight abuse of notation, we will follow the terminology established by [1] and call \(G_{ab}\) the quantum information metric or QIM.

  4. Fidelity is a quantum measure, which specifies the degree of change occurring in the system by turning on the deformations. Let us note that there is also another definition, \({\mathcal {F}}'=|\langle \psi |\xi \rangle |=\sqrt{\mathcal {F}}\), which is sometimes referred to as quantum fidelity as well. However, \({\mathcal {F}}\) is more common, while \({\mathcal {F}}'\) could be referred to as the square root fidelity.

  5. The presence of the cutoff \(\epsilon \) around \(\tau =0\) is necessary to address any ultraviolet divergences in case there is a discontinuity, when passing from the original to the deformed Lagrangian.

  6. It is conjectured to be a specific non-local field theory, namely dipole field theory (see Appendix A for more information).

  7. Note that this picture is a bit different from the one in Sect. (2.1). When considering the dual gravitational theory we have to consider the full range of the CFT theory \({\mathcal {L}}_0\) for \(\tau \in (-\infty , +\infty )\). The same is valid also for the deformed theory with \({\mathcal {L}}_1\), which now should also be considered for \(\tau \in (-\infty , +\infty )\). Finally, a new theory with \({\mathcal {L}}_2={\mathcal {L}}_1\) only for \(\tau \in (0, +\infty )\) is required for consistency of the perturbative bulk holographic method.

  8. The source function \({\hat{\phi }} _0(\mathbf {x}_1,\tau _1)=1\), which can be seen from the asymptotic expansion of the Bessel functions, defining the propagator near the boundary at \(r=0\), see [4].

  9. In this section we prefer to directly call \({G_{\lambda \lambda }^{Bulk}}\) HFIM, which in the correct asymptotic limits will be shown to reduce to QIM and thus equivalent to QFIM.

  10. In this case, the bulk theory is \((d+3)\)-dimensional Schrödinger spacetime and the dual gauge theory lives on the \((d+1)\)-dimensional boundary.

  11. Such investigations for holographic entanglement entropy, mutual information and entanglement of purification over holographic Lifshitz theory have been already initiated in [65].

  12. For a detailed group-theoretical perspective on non-relativistic holography see [8].

  13. Together with the metric the procedure also generates a nonzero B-field of the form

    $$\begin{aligned} B_{(2)}=\frac{1}{z^2}{\mathcal {K}}\wedge dx^+. \end{aligned}$$
  14. The original Schrödinger background (3.1), used in this paper, was first derived in [3, 4].

  15. Here \({\hat{\phi }} _0(\mathbf {x}_1,\tau _1)=1\).

References

  1. A. Trivella, Holographic Computations of the Quantum Information Metric. Class. Quant. Grav. 34(10), 105003 (2017). https://doi.org/10.1088/1361-6382/aa69a6. arXiv:1607.06519 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). https://doi.org/10.1023/A:1026654312961. arXiv:hep-th/9711200

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. Phys. Rev. D 78, 046003 (2008). https://doi.org/10.1103/PhysRevD.78.046003. arXiv:0804.3972 [hep-th]

    Article  ADS  Google Scholar 

  4. K. Balasubramanian, J. McGreevy, Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 101, 061601 (2008). https://doi.org/10.1103/PhysRevLett.101.061601. arXiv:0804.4053 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Bergman, O.J. Ganor, Dipoles, twists and noncommutative gauge theory. JHEP 10, 018 (2000). https://doi.org/10.1088/1126-6708/2000/10/018. arXiv:hep-th/0008030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S. Iso, H. Kawai, Y. Kitazawa, Bilocal fields in noncommutative field theory. Nucl. Phys. B 576, 375–398 (2000). https://doi.org/10.1016/S0550-3213(00)00092-4. arXiv:hep-th/0001027

    Article  ADS  MATH  Google Scholar 

  7. A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek, G. Rajesh, Nonlocal field theories and their gravity duals. Phys. Rev. D 65, 066005 (2002). https://doi.org/10.1103/PhysRevD.65.066005. arXiv:hep-th/0103090

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Dobrev, Non-relativistic holography - a group-theoretical perspective. Int. J. Mod. Phys. A 29, 1430001 (2014). https://doi.org/10.1142/S0217751X14300014. arXiv:1312.0219 [hep-th]

    Article  ADS  MATH  Google Scholar 

  9. M. Guica, F. Levkovich-Maslyuk, K. Zarembo, Integrability in dipole-deformed \(\cal{\varvec {N}}={\varvec {4}}\) super Yang-Mills. J. Phys. A 50(39), 39 (2017). https://doi.org/10.1088/1751-8121/aa8491. arXiv:1706.07957 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  10. U. Gursoy, C. Nunez, Dipole deformations of N=1 SYM and supergravity backgrounds with U(1) x U(1) global symmetry. Nucl. Phys. B 725, 45–92 (2005). https://doi.org/10.1016/j.nuclphysb.2005.07.023. arXiv:hep-th/0505100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. D.Z. Freedman, U. Gursoy, Comments on the beta-deformed N=4 SYM theory. JHEP 11, 042 (2005). https://doi.org/10.1088/1126-6708/2005/11/042. arXiv:hep-th/0506128

    Article  ADS  Google Scholar 

  12. U. Gursoy, Probing universality in the gravity duals of N=1 SYM by gamma-deformations. JHEP 05, 014 (2006). https://doi.org/10.1088/1126-6708/2006/05/014. arXiv:hep-th/0602215

    Article  ADS  MathSciNet  Google Scholar 

  13. C.-S. Chu, G. Georgiou, V.V. Khoze, Magnons, classical strings and beta-deformations. JHEP 11, 093 (2006). https://doi.org/10.1088/1126-6708/2006/11/093. arXiv:hep-th/0606220

    Article  ADS  Google Scholar 

  14. N. Bobev, R. Rashkov, Multispin giant magnons. Phys. Rev. D (2006). https://doi.org/10.1103/PhysRevD.74.046011

    Article  Google Scholar 

  15. N. Bobev, R. Rashkov, Spiky strings, giant magnons and beta-deformations. Phys. Rev. D 76, 046008 (2007). https://doi.org/10.1103/PhysRevD.76.046008. arXiv:0706.0442 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Bobev, H. Dimov, R. Rashkov, Semiclassical strings in Lunin-Maldacena background. Bulg. J. Phys. 35, 274–285 (2008). arXiv:hep-th/0506063

    MathSciNet  MATH  Google Scholar 

  17. S. Sachdev, J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993). https://doi.org/10.1103/PhysRevLett.70.3339. arXiv:cond-mat/9212030

    Article  ADS  Google Scholar 

  18. Y.-I. Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451(7179), 689–693 (2008). https://doi.org/10.1038/nature06473. arXiv:cond-mat.soft/0709.3027

    Article  ADS  Google Scholar 

  19. A. Adams, K. Balasubramanian, J. McGreevy, Hot spacetimes for cold atoms. JHEP 11, 059 (2008). https://doi.org/10.1088/1126-6708/2008/11/059. arXiv:0807.1111 [hep-th]

    Article  ADS  Google Scholar 

  20. A. Golubtsova, H. Dimov, I. Iliev, M. Radomirov, R.C. Rashkov, T. Vetsov, Pulsating strings in schr 5 \(\times \) t 1,1 background. J. Phys. A Math. Theor. 54(3), 035401 (2020). https://doi.org/10.1088/1751-8121/abc7e9

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Golubtsova, H. Dimov, I. Iliev, M. Radomirov, R. Rashkov, T. Vetsov, More on Schrödinger holography. JHEP 08, 090 (2020). https://doi.org/10.1007/JHEP08(2020)090. arXiv:2004.13802 [hep-th]

    Article  ADS  MATH  Google Scholar 

  22. H. Dimov, M. Radomirov, R. Rashkov, T. Vetsov, On pulsating strings in Schrodinger backgrounds. JHEP 10, 094 (2019). https://doi.org/10.1007/JHEP10(2019)094. arXiv:1903.07444 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. Zoakos, Finite size effects in classical string solutions of the Schrödinger geometry. JHEP 08, 091 (2020). https://doi.org/10.1007/JHEP08(2020)091. arXiv:2006.02285 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. G. Georgiou, D. Zoakos, Giant gravitons on the Schrödinger pp-wave geometry. JHEP 03, 185 (2020). https://doi.org/10.1007/JHEP03(2020)185. arXiv:2002.05460 [hep-th]

    Article  ADS  MATH  Google Scholar 

  25. G. Georgiou, K. Sfetsos, D. Zoakos, String theory on the Schrö dinger pp-wave background. JHEP 08, 093 (2019). https://doi.org/10.1007/JHEP08(2019)093. arXiv:1906.08269 [hep-th]

    Article  ADS  MATH  Google Scholar 

  26. G. Georgiou, D. Zoakos, Holographic three-point correlators in the Schrodinger/dipole CFT correspondence. JHEP 09, 026 (2018). https://doi.org/10.1007/JHEP09(2018)026. arXiv:1806.08181 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C. Ahn, P. Bozhilov, Giant magnon-like solution in Sch\(_5 x S^5\). Phys. Rev. D 98(10), 106005 (2018). https://doi.org/10.1103/PhysRevD.98.106005. arXiv:1711.09252 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). https://doi.org/10.1103/PhysRevLett.96.181602. arXiv:hep-th/0603001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Ryu, T. Takayanagi, Aspects of holographic entanglement entropy. JHEP 08, 045 (2006). https://doi.org/10.1088/1126-6708/2006/08/045. arXiv:hep-th/0605073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. L. Susskind, “Computational Complexity and Black Hole Horizons,” Fortsch. Phys. 64 (2016) 24–43, https://doi.org/10.1002/prop.201500092. arXiv:1403.5695 [hep-th]. [Addendum: Fortsch.Phys. 64, 44–48 (2016)]

  31. D. Stanford, L. Susskind, Complexity and shock wave geometries. Phys. Rev. D 90(12), 126007 (2014). https://doi.org/10.1103/PhysRevD.90.126007. arXiv:1406.2678 [hep-th]

    Article  ADS  Google Scholar 

  32. M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, Distance between quantum states and Gauge-gravity duality. Phys. Rev. Lett. 115(26), 261602 (2015). https://doi.org/10.1103/PhysRevLett.115.261602. arXiv:1507.07555 [hep-th]

    Article  ADS  Google Scholar 

  33. M. Moosa and I. Shehzad, “Is volume the holographic dual of fidelity susceptibility?,” arXiv:1809.10169 [hep-th]

  34. A. Belin, A. Lewkowycz, G. Sárosi, Complexity and the bulk volume, a New York time story. JHEP 03, 044 (2019). https://doi.org/10.1007/JHEP03(2019)044. arXiv:1811.03097 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. K. K. Sharma and V. P. Gerdt, “Quantum information scrambling and entanglement in bipartite quantum states,” arXiv:2001.07610 [quant-ph]

  36. A. Touil, S. Deffner, Quantum scrambling and the growth of mutual information. Sci. Technol. 5, 035005 (2020). https://doi.org/10.1088/2058-9565/ab8ebb. arXiv:2002.02867 [quant-ph]

    Article  Google Scholar 

  37. S. Xu, B. Swingle, Locality, quantum fluctuations, and scrambling. Phys. Rev. X 9, 031048 (2019). https://doi.org/10.1103/PhysRevX.9.031048

    Article  Google Scholar 

  38. J. Liu, H. Yuan, X.-M. Lu, X. Wang, Quantum Fisher information matrix and multiparameter estimation. J. Phys. A 53(2), 023001 (2020). https://doi.org/10.1088/1751-8121/ab5d4d. arXiv:1907.08037 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  39. N. Lashkari, M. Van Raamsdonk, Canonical energy is quantum Fisher information. JHEP 04, 153 (2016). https://doi.org/10.1007/JHEP04(2016)153. arXiv:1508.00897 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. H. Dimov, S. Mladenov, R. Rashkov, T. Vetsov, Entanglement entropy and Fisher information metric for closed bosonic strings in homogeneous plane wave background. Phys. Rev. D 96(12), 126004 (2017). https://doi.org/10.1103/PhysRevD.96.126004. arXiv:1705.01873 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Vetsov and R. Rashkov, “Fisher metric for diagonalizable quadratic hamiltonians and application to phase transitions,” in Proceedings of the Nineteenth International Conference on Geometry, Integrability and Quantization, pp. 225–233. Avangard Prima, Sofia, Bulgaria, 2018. https://doi.org/10.7546/giq-19-2018-225-233

  42. H. Dimov, S. Mladenov, R. Rashkov, T. Vetsov, Information Geometry of Strings on Plane Wave Background. Springer Proc. Math. Stat. 255, 205–214 (2017). https://doi.org/10.1007/978-981-13-2179-5_15

  43. S. Banerjee, J. Erdmenger, D. Sarkar, Connecting Fisher information to bulk entanglement in holography. JHEP 08, 001 (2018). https://doi.org/10.1007/JHEP08(2018)001. arXiv:1701.02319 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. D. Sarkar, S. Banerjee, and J. Erdmenger, “A holographic dual to Fisher information and its relation with bulk entanglement,” PoS CORFU2016 (2017) 092. https://doi.org/10.22323/1.292.0092

  45. M. Van Raamsdonk, Building up spacetime with quantum entanglement. Gen. Rel. Grav. 42, 2323–2329 (2010). https://doi.org/10.1142/S0218271810018529. arXiv:1005.3035 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. Tsuchiya, K. Yamashiro, Information geometry encoded in bulk geometry. JHEP 06, 107 (2020). https://doi.org/10.1007/JHEP06(2020)107. arXiv:2002.11365 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. E. Malek, J. Murugan, J.P. Shock, The information metric on the moduli space of instantons with global symmetries. Phys. Lett. B 753, 660–663 (2016). https://doi.org/10.1016/j.physletb.2015.12.044. arXiv:1507.08894 [hep-th]

    Article  ADS  MATH  Google Scholar 

  48. J. Erdmenger, K.T. Grosvenor, R. Jefferson, Information geometry in quantum field theory: lessons from simple examples. SciPost Phys. 8(5), 073 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Trivella, Quantum information through holography and applications. PhD thesis, UCLA, Los Angeles (main), 2019

  50. S. Karar, R. Mishra, S. Gangopadhyay, Holographic complexity of boosted black brane and Fisher information. Phys. Rev. D 100(2), 026006 (2019). https://doi.org/10.1103/PhysRevD.100.026006. arXiv:1904.13090 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  51. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605–659 (1995). https://doi.org/10.1103/RevModPhys.67.605. [Erratum: Rev. Mod. Phys. 68, 313-313 (1996)]

  52. S.A.H. Mansoori, B. Mirza, M. Fazel, Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry. JHEP 04, 115 (2015). https://doi.org/10.1007/JHEP04(2015)115. arXiv:1411.2582 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  53. S.A. Hosseini Mansoori, B. Mirza, Geometrothermodynamics as a singular conformal thermodynamic geometry. Phys. Lett. B 799, 135040 (2019). https://doi.org/10.1016/j.physletb.2019.135040. arXiv:1905.01733 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  54. K. Kolev, K. Staykov, T. Vetsov, Thermodynamic stability of the stationary Lifshitz black hole of new massive gravity. Eur. Phys. J. C 79(12), 1009 (2019). https://doi.org/10.1140/epjc/s10052-019-7522-9. arXiv:1907.10364 [gr-qc]

    Article  ADS  Google Scholar 

  55. H. Dimov, R. Rashkov, T. Vetsov, Thermodynamic information geometry and complexity growth of a warped AdS black hole and the warped AdS\(_3\)/CFT\(_2\) correspondence. Phys. Rev. D 99(12), 126007 (2019). https://doi.org/10.1103/PhysRevD.99.126007. arXiv:1902.02433 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  56. Y.H. Khan, P.A. Ganai, Quantum gravity effects on thermodynamics of de Sitter black holes in massive gravity. Int. J. Mod. Phys. A 35(19), 2050090 (2020). https://doi.org/10.1142/S0217751X20500906

    Article  ADS  MathSciNet  Google Scholar 

  57. S. Amari, H. Nagaoka, Methods of Information Geometry, Translations of Mathematical Monographs, vol. 191 (2000). https://doi.org/10.1090/mmono/191

  58. S. Amari, Information Geometry and Its Applications. Applied Mathematical Sciences, Springer, Tokyo Hardcover. https://doi.org/10.1007/978-4-431-55978-8

  59. D. Bak, A. Trivella, Quantum information metric on \(\mathbb{R} \times S^{d-1}\). JHEP 09, 086 (2017). https://doi.org/10.1007/JHEP09(2017)086. arXiv:1707.05366 [hep-th]

    Article  ADS  MATH  Google Scholar 

  60. J. Alvarez-Jimenez, A. Dector, J. Vergara, Quantum information metric and berry curvature from a Lagrangian approach. JHEP 03, 044 (2017). https://doi.org/10.1007/JHEP03(2017)044. arXiv:1702.00058 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. D. Bak, Information metric and Euclidean Janus correspondence. Phys. Lett. B 756, 200–204 (2016). https://doi.org/10.1016/j.physletb.2016.03.012. arXiv:1512.04735 [hep-th]

    Article  ADS  MATH  Google Scholar 

  62. A. Volovich, C. Wen, Correlation functions in non-relativistic holography. JHEP 05, 087 (2009). https://doi.org/10.1088/1126-6708/2009/05/087. arXiv:0903.2455 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  63. R.G. Leigh, N. Nguyen hoang, Real-time correlators and non-relativistic holography. JHEP 11, 010 (2009). https://doi.org/10.1088/1126-6708/2009/11/010. arXiv:0904.4270 [hep-th]

    Article  ADS  Google Scholar 

  64. M. Miyaji and T. Takayanagi, “Surface/State Correspondence as a Generalized Holography,” PTEP 2015 no. 7, (2015) 073B03, https://doi.org/10.1093/ptep/ptv089. arXiv:1503.03542 [hep-th]

  65. H. Gong, P. Liu, G. Fu, X.-M. Kuang, and J.-P. Wu, “Informational properties of holographic Lifshitz field theory,” arXiv:2009.00450 [hep-th]

  66. A.O. Barut, Conformal group \(\rightarrow \) Schroedinger group \(\rightarrow \) dynamical group - the maximal kinematical group of the massive Schroedinger particle. Helvetica Physica Acta 46(4), 496–503 (1973)

    MathSciNet  Google Scholar 

  67. T. Matsumoto, K. Yoshida, Schrödinger geometries arising from Yang-Baxter deformations. JHEP 04, 180 (2015). https://doi.org/10.1007/JHEP04(2015)180. arXiv:1502.00740 [hep-th]

    Article  ADS  MATH  Google Scholar 

  68. T. Kameyama, H. Kyono, J.-I. Sakamoto, K. Yoshida, Lax pairs on Yang-Baxter deformed backgrounds. JHEP 11, 043 (2015). https://doi.org/10.1007/JHEP11(2015)043. arXiv:1509.00173 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. G. Georgiou, D. Zoakos, Giant magnons and spiky strings in the Schrödinger/dipole-deformed CFT correspondence. JHEP 02, 173 (2018). https://doi.org/10.1007/JHEP02(2018)173. arXiv:1712.03091 [hep-th]

    Article  ADS  MATH  Google Scholar 

  70. M. Guica, F. Levkovich-Maslyuk, K. Zarembo, Integrability in dipole-deformed \(\varvec {\cal{N}=4}\) super Yang-Mills. J. Phys. A 50(39), 39 (2017). https://doi.org/10.1088/1751-8121/aa8491. arXiv:1706.07957 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Alvarez-Jimenez, J. Vergara, The quantum geometric tensor from generating functions. Int. J. Quant. Inf. 17(02), 1950017 (2019). https://doi.org/10.1142/S0219749919500175

    Article  MathSciNet  MATH  Google Scholar 

  72. V. Smirnov, Evaluating feynman integrals (Springer, New York, 2004)

    MATH  Google Scholar 

  73. R. Alahmad, Products of incomplete gamma functions integral representations. Math. Sci. Appl. E-Noteds 4, 47–51 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anastasia Golubtsova and Peter Ivanov for insightful discussions. The support given by the Bulgarian NSF grants N28/5 and DN-18/1 is gratefully acknowledged. This work is also partially supported by the Program “JINR-Bulgaria” at the Bulgarian Nuclear Regulatory Agency. T. V. acknowledges the support by the SU grant 80-10-68/13.04.20 and the Bulgarian national program “Young Scientists and Postdoctoral Research Fellows” 2020. M. R. is grateful to SU grant under 80-10-62/13.04.20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vetsov.

Appendices

A short note on how to generate Schrödinger spacetimes and their dual CFT theories

The symmetry of the free Schrödinger equation

$$\begin{aligned} \frac{\partial ^2}{\partial \mathbf {r}^{\,2}}\phi -2im \frac{\partial }{\partial t}\phi =0, \end{aligned}$$
(A.1)

is the so-called Schrödinger group. In n-dimensional spacetime the group consists of spatial translations indicated by \(\mathbf {A}\), rotations given by the matrix \(\Omega \), and Galilean boosts with velocity \(\mathbf {v}\),

$$\begin{aligned} t\,\rightarrow \, t'=\frac{at+b}{ct+d}, \qquad \mathbf {r}\,\rightarrow \, \mathbf {r}\,'=\frac{\Omega \mathbf {r} + \mathbf {v}t + \mathbf {A}}{ct+d},\quad ad-bc=1. \end{aligned}$$
(A.2)

In addition, one has dilatation, where time and space scale differently

$$\begin{aligned} t\rightarrow \lambda ^2 t,\quad \mathbf {r}\rightarrow \lambda \mathbf {r}, \end{aligned}$$
(A.3)

and one additional special conformal transformation

$$\begin{aligned} t\rightarrow \frac{t}{1+\lambda t},\quad \mathbf {r} \rightarrow \frac{\mathbf {r}}{1+\lambda t}. \end{aligned}$$
(A.4)

From group theory point of view, the Schrödinger group can be thought of as a non-relativistic analogue of the conformal group. In fact, the Schrödinger group can be embedded into the relativistic conformal group \(SO(2,n+2)\) in \(n+1\) dimensions [3, 4, 66], as well as a particular contraction of the conformal group.

For purposes of the holographic correspondence it is important to consider spaces with the Schrödinger group being the maximal group of isometries.Footnote 12 Such spaces are called Schrödinger spaces. There is a specific way to obtain the spacetime geometry equipped with this symmetry via TsT (T-duality-shift-T-duality) transformations.

Our starting point is the AdS metric, which is invariant under the whole conformal group and deform it to reduce the symmetry down to the Schrödinger group.

Being a particular case of the so-called Drinfel’d-Reshetikhin twist, the TsT procedure has been used for generating many backgrounds keeping partial or full integrability of the system. Specific point in generating Schrödinger backgrounds via TsT transformations is to include one of the light-cone variables. This particular deformation is also known as the null-Melvin twist. This procedure can be implemented by the following key steps:

  • Represent the theory in light-cone coordinates and identify a Killing direction, say \(\psi \),

  • Perform a T-duality along the chosen Killing direction \(\psi \),

  • Boost the geometry in the Killing direction by \(\hat{\mu }\), i.e. \(x^- \rightarrow x^- - \hat{\mu } \tilde{\psi }\), where \(\tilde{\psi }\) is the T-dualized coordinate \(\psi \),

  • Finally, perform a T-duality back to IIA/IIB along \({\tilde{\psi }}\).

In order to accomplish the desired result consider general background in the form \(AdS_n\times X^m\),

$$\begin{aligned} ds^2=\ell ^2\,\frac{2dx^+dx^-+dx^idx_i +dz^2}{z^2}+ds^2_{X^m}, \end{aligned}$$
(A.5)

Now we perform a null Melvin twist along a Killing vector \({\mathcal {K}}\) on \(X^m\). The result is

$$\begin{aligned} ds^2=ds^2_{Schr_n}+ds^2_{X^m}, \end{aligned}$$
(A.6)

where the Schrödinger metric yields

$$\begin{aligned} ds^2_{Schr_n}=-\frac{\Omega }{z^4}+\frac{1}{z^2}(2dx^{+}dx^{-}+d\mathbf {x}^2+dz^2), \quad \Omega = \left\| {\mathcal {K}}\right\| ^2=*({\mathcal {K}} \wedge *{\mathcal {K}}). \end{aligned}$$
(A.7)

Here the Hodge star operator \(*\) is taken with respect to the metric on \(X^m\). It is clear that \(\Omega \) is nonnegative being a square length of a Killing vector.Footnote 13 For particular examples see [20, 21, 67,68,69].Footnote 14

An important remark is that in order to make holographic sense of these solutions one has to impose some conditions. In particular for these to be holographic duals to non-relativistic field theories the light-cone coordinate \(x^-\) should be periodic, \(x^-\sim {x^-} +2\pi r_{x^-}\) [3, 4, 19]. The momentum along this compact direction is quantized in units of the inverse radius \(r_{x^-}^{-1}\).

The dual theory is conjectured to be a specific field theory, namely dipole field theory. The TsT transformation, which produces the bulk theory corresponds to a particular deformation (Drinfel’d-Reshetikhin twist) on field theory side. It translates to the dual theory as a star product. When the directions involved in TsT are transverse to the stack of branes from which geometry descends, it produces a twist in the field theory having ordinary product. If however, one of the directions is along the branes, then the star product is non-trivial and the theory becomes dipole one

$$\begin{aligned} (\Phi _1\star \Phi _2)(x)= \Phi _1(x+L_1)\Phi _2(x-L_2), \end{aligned}$$
(A.8)

where \(L=L_1+L_2\) is the dipole length associated with R-charges. The big advantage of holographic model with Schrödinger symmetry is that they could be integrable. Proving that in the case of \(Schr_5\times S^5\) for example, the authors of [70] were able to map the composite operators of monomial form to a spin chain. To study field theory side one must just replace the ordinary product with the star one

$$\begin{aligned} {\mathcal {O}}= {\text {tr}}(\Phi _1\star \Phi _2\star \cdots ). \end{aligned}$$
(A.9)

Here, one can choose to work either using Seiberg–Witten map or working directly with the star product. A nice analysis has been presented in [70].

Derivation of the CFT quantum geometric tensor

Let \(|\varphi \rangle \) be a generic state, inserted at \(\tau =0\). The overlap between the original ground state \(|\psi _0\rangle \) at \(\tau \rightarrow -\infty \) and this new state at \(\tau \rightarrow 0\) is given by

$$\begin{aligned} \langle {\tilde{\varphi }}|\psi _0 \rangle =\frac{1}{\sqrt{Z_0}}\int \limits ^{\tilde{\varphi }}{\mathcal {D}}\varphi \,e^{-\int \limits _{-\infty }^0 d\tau \int d^d x {\mathcal {L}}_0}, \end{aligned}$$
(B.1)

where \({\tilde{\varphi }}=\varphi (\tau =0)\) and the partition function of the initial undeformed theory is defined by

$$\begin{aligned} Z_0=\int {\mathcal {D}}\varphi \, e^{-\int \limits _{-\infty }^\infty d\tau \int d^d x {\mathcal {L}}_0}. \end{aligned}$$
(B.2)

In a similar fashion, one can consider the evolution from \(\tau = 0\), where \(|{\tilde{\varphi }}\rangle \) is inserted, to \(\tau \rightarrow \infty \), where we are placing the perturbed state \(|\psi _1\rangle \),

$$\begin{aligned} \langle \psi _1|{\tilde{\varphi }} \rangle =\frac{1}{\sqrt{Z_1}}\int \limits _{\tilde{\varphi }}{\mathcal {D}}\varphi \,e^{-\int \limits _{0}^\infty d\tau \int d^d x {\mathcal {L}}_1}=\frac{1}{\sqrt{Z_1}}\int \limits _{\tilde{\varphi }}{\mathcal {D}}\varphi \,e^{-\int \limits _{0}^\infty d\tau \int d^d x( {\mathcal {L}}_0+\delta \lambda ^a{\mathcal {O}}_a)}. \end{aligned}$$
(B.3)

As usually,

$$\begin{aligned} Z_1=\int {\mathcal {D}}\varphi \,e^{-\int \limits _{-\infty }^\infty d\tau \int d^d x( {\mathcal {L}}_0+\delta \lambda ^a{\mathcal {O}}_a)} \end{aligned}$$
(B.4)

is the partition function of the deformed theory. Now, the overlap between both states in the above notations can be formally written as

$$\begin{aligned} \langle \psi _1|\psi _0 \rangle =\int \limits _{\varphi (\tau =0)={\tilde{\varphi }}}{\mathcal {D}}\varphi \langle \psi _1| \varphi \rangle \langle \varphi |\psi _0 \rangle =\frac{1}{\sqrt{Z_0 Z_1}} \int {\mathcal {D}}\varphi \,e^{-\int d^d x \left[ \int \limits _{-\infty }^0 d\tau {\mathcal {L}}_0+\int \limits _{0}^\infty d\tau ( {\mathcal {L}}_0+\delta \lambda ^a{\mathcal {O}}_a)\right] }.\nonumber \\ \end{aligned}$$
(B.5)

Let us write this overlap in a more convenient way [71]

$$\begin{aligned} \langle \psi _1|\psi _0 \rangle =\frac{\left\langle \exp \left( {-\int \limits _{0}^\infty d\tau \int \limits _{V_{{\mathbb {R}}^d}} d^d x \delta \lambda ^a {\mathcal {O}}_a}\right) \right\rangle }{\sqrt{\frac{Z_1}{ Z_0}}}=\frac{\left\langle \exp \left( {-\int \limits _{0}^\infty d\tau \int \limits _{V_{{\mathbb {R}}^d}} d^d x \delta \lambda ^a {\mathcal {O}}_a}\right) \right\rangle }{\sqrt{\left\langle \exp \left( -\int \limits _{-\infty }^\infty d\tau \int \limits _{V_{{\mathbb {R}}^d}}d^d x\delta \lambda ^a\mathcal O_a\right) \right\rangle }},\nonumber \\ \end{aligned}$$
(B.6)

therefore, one has

$$\begin{aligned} |\langle \psi _1|\psi _0\rangle |^2 = \frac{{\left\langle {\exp \left( { - \int \limits _0^\infty d \tau \int \limits _{V_{{\mathbb {R}}^d}} {{d^d}} x\delta {\lambda ^a}{\mathcal{O}_a}(\tau )} \right) } \right\rangle \left\langle {\exp \left( { - \int \limits _{ - \infty }^0 d \tau \int \limits _{V_{{\mathbb {R}}^d}} {{d^d}} x\delta {\lambda ^a}{\mathcal{O}_a}(\tau )} \right) } \right\rangle }}{{\left\langle {\exp \left( { - \int \limits _{ - \infty }^\infty {d\tau \int \limits _{V_{{\mathbb {R}}^d}} {{d^d}} } x\delta {\lambda ^a}{\mathcal{O}_a(\tau )}} \right) } \right\rangle }}.\nonumber \\ \end{aligned}$$
(B.7)

We can now easily expand this expression in power series

$$\begin{aligned} |\langle \psi _1|\psi _0\rangle |^2&= 1 + \frac{1}{2}\int \limits _{V_{{\mathbb {R}}^d}} {{d^d}x_1} \int \limits _{V_{{\mathbb {R}}^d}} {{d^d}x_2} \left[ {\int \limits _0^\infty {d{\tau _1}} \int \limits _0^\infty {d{\tau _2}} \left\langle {{\mathcal{O}_a}({\tau _1}){\mathcal{O}_b}({\tau _2})} \right\rangle } \right. \nonumber \\&\quad + \int \limits _{ - \infty }^0 {d{\tau _1}} \int \limits _{ - \infty }^0 {d{\tau _2}} \left\langle {{\mathcal{O}_a}({\tau _1}){\mathcal{O}_b}({\tau _2})} \right\rangle - \int \limits _{ - \infty }^\infty {d{\tau _1}} \int \limits _{ - \infty }^\infty {d{\tau _2}} \left\langle {{\mathcal{O}_a}({\tau _1}){\mathcal{O}_b}({\tau _2})} \right\rangle \nonumber \\&\quad + \left. 2{\int \limits _0^\infty {d{\tau _1}} \int \limits _{ - \infty }^0 {d{\tau _2}} \left\langle {{\mathcal{O}_a}({\tau _1})} \right\rangle \left\langle {{\mathcal{O}_b}({\tau _2})} \right\rangle } \right] \delta {\lambda ^a}\delta {\lambda ^b} + \mathcal{O}(\delta {\lambda ^3}). \end{aligned}$$
(B.8)

Since we have time reversal symmetry of the correlator,

$$\begin{aligned} \langle {\mathcal {O}}_a(-\tau _1){\mathcal {O}}_b(-\tau _2) \rangle =\langle {\mathcal {O}}_a(\tau _1){\mathcal {O}}_b(\tau _2) \rangle , \end{aligned}$$
(B.9)

and the fact that

$$\begin{aligned} \int \limits _{ - \infty }^\infty {d{\tau _1}} \int \limits _{ - \infty }^\infty {d{\tau _2}} = \int \limits _{ - \infty }^0 {d{\tau _1}} \int \limits _{ - \infty }^0 {d{\tau _2}} + \int \limits _{ - \infty }^0 {d{\tau _1}} \int \limits _0^\infty {d{\tau _2}} + \int \limits _0^\infty {d{\tau _1}} \int \limits _{ - \infty }^0 {d{\tau _2}} + \int \limits _0^\infty {d{\tau _1}} \int \limits _0^\infty {d{\tau _2}} ,\nonumber \\ \end{aligned}$$
(B.10)

one finds

$$\begin{aligned}&|\langle \psi _1|\psi _0\rangle |^2= 1 - \frac{1}{2}\int \limits _{V_{{\mathbb {R}}^d}} {{d^d}x_1} \int \limits _{V_{{\mathbb {R}}^d}} {{d^d}x_2} \int \limits _{ - \infty }^0 {d{\tau _1}} \nonumber \\&\quad \int \limits _0^\infty {d{\tau _2}} \left( {\left\langle {{\mathcal{O}_a}({\tau _1}){\mathcal{O}_b}({\tau _2})} \right\rangle - \left\langle {{\mathcal{O}_a}({\tau _1})} \right\rangle \left\langle {{\mathcal{O}_b}({\tau _2})} \right\rangle } \right) \delta {\lambda ^a}\delta {\lambda ^b}. \end{aligned}$$
(B.11)

Using the definition of the quantum fidelity, we extract the expression for QIM from Eq. (2.2).

Computation of the dual CFT quantum Fisher metric

One has to compute the following integral expression

$$\begin{aligned} G_{\lambda \lambda }^{(CFT)} = \frac{i\Delta M^{\Delta -1} 2^{-\Delta } e^{- \frac{i\pi \Delta }{2}} }{\pi ^{d/2}\, \Gamma \left( \Delta - \frac{d}{2} - 1\right) } \int \!\!d^d x_1 \int \!\!d^d x_2 \int \limits _{ - \infty }^{ - \epsilon }\!\!d\tau _1 \int \limits _\epsilon ^\infty \!\! d\tau _2 \, \frac{1}{(\tau _2 - \tau _1)^{\Delta }} \, e^{i\frac{M(1+i \varepsilon )}{2} \frac{(\mathbf {x}_2 - \mathbf {x}_1)^2}{\tau _2 - \tau _1}} ,\nonumber \\ \end{aligned}$$
(C.1)

which is a Gaussian integral over \(\mathbf {x}\) space, i.e.

$$\begin{aligned} {I_x} = \int \!\! {{d^{d }}{x_1}\int \!\! {{d^{d}}{x_2} \, {e^{i\frac{M(1+i \varepsilon )}{2}\frac{{{{({{\mathbf {x}}_2} - {{\mathbf {x}}_1})}^2}}}{{{\tau _2} - {\tau _1}}}}}} } = {e^{\frac{{i\pi }}{2}(1 - d/2)}}{(2\pi )^{\frac{{d}}{2}}}{M^{\frac{{- d}}{2}}(1+i \varepsilon )^{-\frac{d}{2}}} (\tau _2-\tau _1)^\frac{d}{2}{V_{{{\mathbb {R}}^{d}}}},\nonumber \\ \end{aligned}$$
(C.2)

where \(V_{{\mathbb {R}}^{d}}\) is the volume of \({\mathbb {R}}^{d}\) space and we have resorted to the standard Gaussian integral [72]:

$$\begin{aligned} \int \! {{d^\delta }x} \, {e^{i\beta {{\mathbf {x}}^2} - 2i\mathbf {q} \cdot \mathbf {x}}} = {e^{\frac{{i\pi }}{2}\left( {1 - \frac{\delta }{2}} \right) }}{\pi ^{\delta /2}}{\beta ^{ - \delta /2}}{e^{ - i\frac{{{{\mathbf {q}}^2}}}{\beta }}}. \end{aligned}$$
(C.3)

We can check this by setting \(\xi = \frac{M(1+i \varepsilon )}{{2({\tau _2} - {\tau _1})}}\), thus

$$\begin{aligned} {I_x}&= \int \! {{d^d}{x_1} \int \! {{d^d}{x_2} \, {e^{i\xi {{({{\mathbf {x}}_2} - {{\mathbf {x}}_1})}^2}}}} } = \int \! {{d^d}{x_1} \int \! {{d^d}{x_2} \,{e^{i\xi (\mathbf {x}_1^2 - 2\mathbf {x}_1.{{\mathbf {x}}_2} + \mathbf {x}_2^2)}}} } \\&= \int \! {{d^d}{x_1} \, {e^{i\xi \mathbf {x}_1^2}} \underbrace{\int \! {{d^d}{x_2} \, {e^{i\xi \mathbf {x}_2^2 - 2i\xi \mathbf {x}_1.{{\mathbf {x}}_2}}}} }_{{e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) }}{\pi ^{d/2}}{\xi ^{ - d/2}}{e^{ - i\frac{{{{(\xi \mathbf {x}_1^{})}^2}}}{\xi }}}}} = {e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) }}{\pi ^{d/2}}{\xi ^{ - d/2}}\underbrace{\int \! {{d^d}{x_1} \, {e^{i\xi \mathbf {x}_1^2}} \, {e^{ - i\xi \mathbf {x}_1^2}}} }_{{V_{{{\mathbb {R}}^d}}}}\\&= {e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) }}{2^{d/2}}{\pi ^{d/2}}{M^{ - d/2}}(1+i \varepsilon )^{-\frac{d}{2}}{({\tau _2} - {\tau _1})^{d/2}}{V_{{{\mathbb {R}}^d}}}. \end{aligned}$$

The integrals over \(\tau _1\) and \(\tau _2\) now take the form

$$\begin{aligned} {I_t} = \int \limits _{ - \infty }^{ - \epsilon }\! {d{\tau _1} \int \limits _\epsilon ^\infty \! {d{\tau _2} \, {{({\tau _2} - {\tau _1})}^{\frac{d}{2} - \Delta }}} } = \frac{{{2^{\frac{d}{2} - \Delta + 4}}}}{{(d - 2\Delta + 2)(d - 2\Delta + 4)}}{\epsilon ^{\frac{d}{2} - \Delta + 2}}, \end{aligned}$$
(C.4)

where the integrals are convergent only if

$$\begin{aligned} 2+\frac{d}{2}-\Delta <0. \end{aligned}$$
(C.5)

Therefore, QIM in the dual CFT to Schrödinger spacetime yields

$$\begin{aligned} {G_{\lambda \lambda }^{(CFT)}} = \frac{{\Delta {2^{d - 2\Delta + 3}}{e^{- \frac{{i\pi }}{4}(d +2\Delta )}}{M^{ \Delta - \frac{d}{2} - 1}}{V_{{{\mathbb {R}}^d}}}}}{{(d - 2\Delta + 4) \,\Gamma \left( {\Delta - \frac{d}{2}} \right) {(1+i \varepsilon )^{\frac{d}{2}}}}}{\,\epsilon ^{2 + \frac{d}{2} - \Delta }}=C {\epsilon ^{2 + \frac{d}{2} - \Delta }}, \end{aligned}$$
(C.6)

where at the final expression we have removed the regulator \( \varepsilon \) from the correlation function.

Computation of the bulk holographic Fisher metric

1.1 Computation of the fields \(\phi _{1,2}\)

We will be integrating the bulk-to-boundary propagator \(K(r,\mathbf {x},\tau ;{{\mathbf {x}}_1},{\tau _1})\) over \(x_1\) and \(\tau _1\), when \(\tau _1<\tau \). Therefore, the field \(\phi _1\) is given byFootnote 15

$$\begin{aligned} {\phi _1}(r,\mathbf {x},\tau )&= \delta \lambda \int \! {{d^d}{x_1}\int \limits _{ -\infty }^\tau \! {d{\tau _1} \, K(r,\mathbf {x},\tau ;{{\mathbf {x}}_1},{\tau _1})} \, {{\hat{\phi }} _0(\mathbf {x}_1,\tau _1)}} \\&= \delta \lambda \, {c_\Delta }{r^\Delta }\int \limits _{ -\infty }^\tau \! {d{\tau _1} \, \frac{1}{{{{(\tau - {\tau _1})}^\Delta }}}\, {e^{\frac{i\, r^2 M}{2(\tau - \tau _1) }}}} \, {e^{\frac{i\, M\mathbf {x}^{2} }{2(\tau - {\tau _1})}}} \int \! {{d^d}{x_1}} \, {e^{\frac{i M }{2(\tau - \tau _1)}(\mathbf {x}_1^2 - 2\mathbf {x}_1.{{\mathbf {x}}})}} \\&=\delta \lambda {c_\Delta }{r^\Delta }\int \limits _{-\infty }^\tau \! d{\tau _1} \, \frac{1}{{{{(\tau - {\tau _1})}^\Delta }}}\, e^{\frac{i\, r^2 M}{2(\tau - \tau _1)}} \, e^{\frac{i\, M \mathbf {x}^2}{2(\tau - \tau _1)}} \, e^{\frac{ -i\,M\mathbf {x}^2}{2(\tau - \tau _1)}} \, e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) } {\pi ^{d/2}} \\&\quad \times \left( \frac{M}{2(\tau - \tau _1)} \right) ^{ - d/2}\\&=\delta \lambda \, c_\Delta \, r^{\Delta } \,2^{d/2} M^{-d/2}\, e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) }{\pi ^{d/2}}\int \limits _{ -\infty }^\tau \! {d\tau _1\, {} e^{\frac{i\, \mu }{\tau - \tau _1}}} {(\tau - {\tau _1})^{\frac{d}{2} - \Delta }}, \end{aligned}$$

where we have introduced the notation

$$\begin{aligned} \mu = \frac{M r^2}{2}. \end{aligned}$$
(D.1)

Let us calculate the last integral. For this purpose, we change the variables to \(y=\tau -\tau _1\) with boundaries

$$\begin{aligned} y = \tau - {\tau _1} = \left\{ \begin{array}{l} 0,\quad {\tau _1} \rightarrow \tau ,\\ \infty ,\quad {\tau _1} \rightarrow -\infty , \end{array} \right. \end{aligned}$$
(D.2)

hence,

$$\begin{aligned} \int \limits _0^\infty \! dy\, e^{\frac{i\mu }{y}} \, y^{\frac{d}{2} - \Delta } = \Gamma \left( \Delta - \frac{d}{2} - 1 \right) (-i\mu )^{\frac{d}{2} - \Delta + 1}, \end{aligned}$$
(D.3)

where one has the convergence condition

$$\begin{aligned} \Delta>\frac{d}{2}+1,\quad M>0. \end{aligned}$$
(D.4)

The field \(\phi _1\) now becomes

$$\begin{aligned} {\phi _1}(r,\mathbf {x},\tau ) \equiv {\phi _1}(r) = i\delta \lambda \, e^{ - \frac{{i\pi d}}{2}} {r^{d - \Delta + 2}}. \end{aligned}$$
(D.5)

We can do a similar computation for the field \(\phi _2\), namely

$$\begin{aligned} {\phi _2}(r,\mathbf {x},t)&=\delta \lambda \, c_\Delta \, r^{\Delta } \,2^{d/2} M^{-d/2}\, {e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) }}{\pi ^{d/2}} \int \limits _{0 }^\tau \! d\tau _1\, e^{-\frac{{{{\tilde{\mu }}}}}{{\tau - {\tau _1}}}} {(\tau - {\tau _1})^{\frac{d}{2} - \Delta }}\nonumber \\&=\delta \lambda \, c_\Delta \, r^{\Delta } \,2^{d/2} M^{-d/2}\, {e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) }}{\pi ^{d/2}} \int \limits _0^\tau \! d{y}\, e^{-\frac{{{{\tilde{\mu }}}}}{{y}}} {y^{\frac{d}{2} - \Delta }} \nonumber \\&=\delta \lambda \, c_\Delta \, r^{\Delta } \,2^{d/2} M^{-d/2}\, e^{\frac{{i\pi }}{2}\left( {1 - \frac{d}{2}} \right) } \pi ^{d/2}\, {\tilde{\mu }}^{\frac{d}{2}-\Delta +1}\!\int \limits _{ \tilde{\mu }/\tau }^\infty \! d{x}\, e^{-x} {x^{a-1 }} \nonumber \\&=\frac{i \delta \lambda \, e^{-\frac{i \pi d}{2}} r^{d-\Delta +2}}{\Gamma (a)} \Gamma \left( a,\frac{\mu }{t}\right) \!, \end{aligned}$$
(D.6)

where at the end we have returned to real time \(\tau \rightarrow -i t\), and we have defined the parameter

$$\begin{aligned} {\tilde{\mu }} = -i\frac{M r^2}{2}. \end{aligned}$$
(D.7)

1.2 Computation of the HFIM integrals

In order to compute Eqs. (4.7) and (4.8) we have to consider the metric \(\gamma _{ab}\), \(a,b=0,\dots , d\), on the (\(d+1\))-dimensional boundary of the Schrödinger background, namely

$$\begin{aligned} ds_{{{(\partial Schr)}_{d + 1}}}^2 = - {} {L^2}\frac{{d{t^2}}}{{{r^4}}} + {L^2}\frac{{d{{\mathbf {x}}^{{} 2}}}}{{{r^2}}}, \end{aligned}$$
(D.8)

where \(\mathbf {x}\) is a d-dimensional vector. Therefore, one finds

$$\begin{aligned} \sqrt{|\gamma |}=\frac{L^{d+1}}{r^{d+2}}. \end{aligned}$$
(D.9)

On the other hand, only the \(n_r\) component of the normal vector to the boundary contributes, which can be explicitly calculated from

$$\begin{aligned} 1=g_{\mu \nu }n^\mu n^\nu =g_{rr} n^r n^r=\frac{L^2}{r^2}(n^r)^2. \end{aligned}$$
(D.10)

Hence \(n^r=r/L\) and consequently \(n_r=g_{rr} n^r=L/r\). Finally, one has

$$\begin{aligned} \sqrt{|\gamma |}\, n_\mu g^{\mu \nu }=\sqrt{|\gamma |}\, n_r g^{rr}={L^d}\, r^{-1-d}. \end{aligned}$$
(D.11)

Now, we can proceed with the computation of the bulk holographic Fisher information metric, which can be written by

$$\begin{aligned} {G_{\lambda \lambda }^{Bulk}} = -\, \frac{1}{{\delta {\lambda ^2}}}\left( \frac{\delta I_1}{2} - \delta I_2 \right) = \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{2\kappa }}\mathop {\lim }\limits _{r \rightarrow {\tilde{\varepsilon }} } \left( {{c_0}{J_0}\, r^{d-2 \Delta +2} + {c_1}{J_1} + {c_2}{J_2}\, r^{d-2 \Delta +2}} \right) , \end{aligned}$$
(D.12)

where the coefficients \(c_i\) are given by

$$\begin{aligned} c_0 = \frac{e^{-i \pi d}}{2} (d-\Delta +2), \quad c_1 = \frac{M^a \, e^{-id\pi } }{2^{a-1}\, \Gamma ^2(a)} , \quad c_2 = -\, \frac{2 c_0}{\Gamma ^2(a)}. \end{aligned}$$
(D.13)

Consequently, one has to compute the following integrals

$$\begin{aligned}&{J_0} = \int \limits _ {-T}^{-\epsilon }\! dt\, +\, \int \limits _{\epsilon }^{T}\! dt = 2(T - \epsilon ), \end{aligned}$$
(D.14)
$$\begin{aligned}&{J_1} = \int \limits _{\epsilon }^{T}\! dt \, t^{-a} \, e^{-\frac{\mu }{t}}\, \Gamma \left( {a,\frac{\mu }{{t}}} \right) =\int \limits _{1/T}^{1/\epsilon }\! dx\, x^{a-2}\, e^{-\mu x}\, \Gamma (a,\mu x), \end{aligned}$$
(D.15)
$$\begin{aligned}&{J_2} = \int \limits _{\epsilon }^{T}\! dt \,\, \Gamma ^2\! \left( a,\frac{\mu }{t} \right) . \end{aligned}$$
(D.16)

In order to solve \(J_1\) we transform the incomplete gamma function in the following way

$$\begin{aligned} \Gamma (a,\mu x) = (a-1)(a-2)\, \Gamma (a-2,\mu x) \,+\, (a-1)\, \mu ^{a-2}\, x^{a-2}\, e^{-\mu x} \,+\, \mu ^{a-1}\, x^{a-1}\, e^{-\mu x}, \end{aligned}$$
(D.17)

which follows directly from

$$\begin{aligned} \Gamma (a,z) = \frac{{\Gamma (a)}}{{\Gamma (a - n)}}\, \Gamma (a-n,z) \,+\, z^{a-1}\, e^{-z} \sum \limits _{k = 0}^{n - 1} {\frac{{\Gamma (a)}}{{\Gamma (a - k)}}}\, z^{ - k} \end{aligned}$$
(D.18)

for \(n=2\) and we have also used \(\Gamma (a)=(a-1) \Gamma (a-1)\). Hence, the integral \(J_1\) now becomes

$$\begin{aligned} {J_1}&= (a-1)(a-2) \int \limits _{1/T}^{1/\epsilon }\! e^{ - \mu x}\, x^{a - 2}\, \Gamma (a-2,\mu x)\, dx \nonumber \\&\quad + (a-1)\, \mu ^{a-2}\! \int \limits _{1/T}^{1/\epsilon }\! x^{2a - 4}\, e^{ - 2\mu x}\, dx \,+\, \mu ^{a-1}\! \int \limits _{1/T}^{1/\epsilon }\! x^{2a - 3}\, e^{ - 2\mu x}\, dx \nonumber \\&= \frac{1}{\mu }(a-1)(a-2)\, T^{2-a}\, e^{-\frac{\mu }{T}}\, \Gamma \! \left( a-2,\frac{\mu }{T} \right) \,+\, \frac{1}{2\mu ^{a-1}} (a-1)(a-2)^2 \, \Gamma ^2 {\left( {a - 2,\frac{\mu }{T}} \right) }\nonumber \\&\quad - \frac{1}{\mu }(a-1)(a-2)\, \epsilon ^{2-a}\, e^{-\frac{\mu }{\epsilon }}\, \Gamma \! \left( a-2,\frac{\mu }{\epsilon } \right) \,-\, \frac{1}{2\mu ^{a-1}} (a-1)(a-2)^2\, \Gamma ^2 {\left( {a - 2,\frac{\mu }{\epsilon }} \right) }\nonumber \\&\quad + \frac{4^{2-a}}{\mu ^{a-1}} (a-1)(a-2)\, \Gamma \! \left( 2a-4,\frac{2\mu }{\epsilon } \right) \,-\, \frac{4^{2 - a}}{\mu ^{a-1}} (a-1)(a-2)\, \Gamma \! \left( 2a-4, \frac{2\mu }{T} \right) \nonumber \\&\quad + \frac{2^{3-2a}}{\mu ^{a-1}} (a - 1)\, \Gamma \! \left( {2a - 3,\frac{{2\mu }}{T}} \right) \,-\, \frac{2^{3-2a}}{\mu ^{a-1}} (a - 1)\, \Gamma \! \left( {2a - 3,\frac{{2\mu }}{\epsilon }} \right) \nonumber \\&\quad + \frac{4^{1-a}}{\mu ^{a-1}}\, \Gamma \! \left( 2a-2, \frac{2\mu }{T} \right) \,-\, \frac{4^{1-a}}{\mu ^{a-1}}\, \Gamma \! \left( 2a-2, \frac{2\mu }{\epsilon } \right) . \end{aligned}$$
(D.19)

The integral \(J_2\) is more complicated, but also analytically solvable if we use the following power reduction formula [73]:

$$\begin{aligned} \Gamma ^2 (a,z) = \Gamma ^2 (a) \,-\, 2\int \limits _0^{1/2}\! d\omega {} \, \,\gamma \left( 2a,\frac{z}{\omega } \right) \omega ^{a-1} (1 - \omega )^{a-1} . \end{aligned}$$
(D.20)

Let \(\epsilon =T_1\) and \(T=T_2\), hence

$$\begin{aligned} J_2&= \int \limits _{T_1}^{T_2}\! dt\,\, \Gamma ^2\! \left( {a,\frac{\mu }{t}} \right) = \int \limits _{T_1}^{T_2}\! dt \left[ \Gamma ^2 (a) \,-\, 2\int \limits _0^{1/2}\! d\omega \, \gamma \left( 2a,\frac{\mu }{\omega t} \right) \omega ^{a-1} \left( 1-\omega \right) ^{a - 1} \right] \\&= \left( T_2 - T_1 \right) \Gamma ^2 (a) \,-\, 2\int \limits _0^{1/2}\! d\omega \, \omega ^{a-1} (1 - \omega )^{a - 1} \, \int \limits _{T_1}^{T_2}\! dt\, \gamma \left( 2a,\frac{\mu }{\omega t} \right) \\&= \left( T_2-T_1 \right) \Gamma ^2 (a) \,-\, 2\int \limits _0^{1/2}\! d\omega \, \omega ^{a-1} (1- \omega )^{a-1} \left( \,\int \limits _{T_1}^{T_2}\! dt\, \Gamma (2a) - \int \limits _{T_1}^{T_2}\! dy\, \Gamma \! \left( 2a,\frac{\mu }{\omega t} \right) \right) \\&= \left( T_2-T_1 \right) \left[ \Gamma ^2 (a) - 2\Gamma (2a)\, {\mathcal {B}}_{1/2} (a,a) \right] \,+\, 2\int \limits _0^{1/2}\! d\omega \, \omega ^{a-1} (1- \omega )^{a - 1} {\mathcal {J}}(\omega ) . \end{aligned}$$

The inner integral is

$$\begin{aligned} {\mathcal {J}} (\omega )&= \int \limits _{T_1}^{T_2}\! dt\, \Gamma \! \left( 2a,\frac{\mu }{\omega t} \right) \nonumber \\&= T_2\, \Gamma \! \left( 2a,\frac{\mu }{\omega T_2} \right) - T_1\, \Gamma \! \left( 2a,\frac{\mu }{\omega T_1} \right) + \frac{\mu }{\omega } \left[ \Gamma \! \left( 2a - 1,\frac{\mu }{\omega T_1} \right) - \Gamma \! \left( 2a - 1,\frac{\mu }{\omega T_2} \right) \right] , \end{aligned}$$
(D.21)

thus

$$\begin{aligned} J_2 = \left( T_2 - T_1 \right) \left[ \Gamma ^2 (a) - 2\Gamma (2a)\, {\mathcal {B}}_{1/2} (a,a) \right] + {I_1} + {I_2} + {I_3} + {I_4}, \end{aligned}$$
(D.22)

where

$$\begin{aligned}&I_1 = -\, 2T_1 \int \limits _0^{1/2}\! d\omega \, \omega ^{a-1} (1-\omega )^{a-1}\, \Gamma \! \left( 2a,\frac{\mu }{\omega T_1} \right) , \end{aligned}$$
(D.23)
$$\begin{aligned}&I_2 = 2T_2 \int \limits _0^{1/2}\! d\omega \, \omega ^{a-1} (1 - \omega )^{a - 1}\, \Gamma \! \left( 2a,\frac{\mu }{\omega T_2} \right) , \end{aligned}$$
(D.24)
$$\begin{aligned}&I_3 = 2\mu \int \limits _0^{1/2}\! d\omega \, \omega ^{a - 2} (1 - \omega )^{a - 1}\, \Gamma \! \left( 2a - 1,\frac{\mu }{\omega T_1 } \right) , \end{aligned}$$
(D.25)
$$\begin{aligned}&I_4 = -\, 2\mu \int \limits _0^{1/2}\! d\omega \, \omega ^{a - 2} (1 - \omega )^{a - 1}\, \Gamma \! \left( 2a - 1,\frac{\mu }{\omega T_2 } \right) . \end{aligned}$$
(D.26)

The solution is the following. Let \({\mathfrak {b}}_{1,2}=\mu /T_{1,2}\), then

$$\begin{aligned} I_{1,2}&= {\mp } 2T_{1,2} \int \limits _0^{1/2}\! d\omega \, \omega ^{a - 1} (1 - \omega )^{a - 1}\, \Gamma \! \left( {2a,\frac{{\mathfrak {b}}_{1,2}}{\omega }} \right) \\&= {\mp } 2T_{1,2} \int \limits _0^{1/2}\! d\omega \, \omega ^{a - 1} (1-\omega )^{a - 1} {\left( \frac{ {\mathfrak {b}}_{1,2}}{\omega } \right) }^{2a} e^{ -\frac{{\mathfrak {b}}_{1,2}}{\omega } } \int \limits _0^\infty \frac{e^{ - \frac{{\mathfrak {b}}_{1,2}}{\omega }z} }{(1 + z)^{1 - 2a} } \,dz\\&= {\mp } 2T_{1,2} \int \limits _0^\infty \! dz\, (1 + z)^{2a-1}\, {\mathfrak {b}}_{1,2}^{2a} \int \limits _0^{1/2}\! d\omega \, \frac{1}{\omega ^2} \left( {\frac{1}{\omega } - 1} \right) ^{a - 1} e^{-\frac{{\mathfrak {b}}_{1,2}}{\omega }(1 + z)}\, \\&= {\mp } 2T_{1,2} \int \limits _0^\infty \! dz\, (1 + z)^{2a-1}\, {\mathfrak {b}}_{1,2}^{2a} \int \limits _0^{1/2}\! d\left( \frac{ -1}{\omega } \right) \! \left( \frac{1}{\omega } - 1 \right) ^{a-1} e^{- \frac{{\mathfrak {b}}_{1,2}}{\omega }(1 + z)} \\&= \left\{ {x = \frac{1}{\omega } = \left\{ \begin{array}{l} 2,\quad \,\,\, \omega = 1/2,\\ \infty ,\quad \omega = 0 \end{array} \right. \quad } \right\} \\&= {\mp } 2T_{1,2} \int \limits _0^\infty \! dz\, (1 + z)^{2a - 1}\, {\mathfrak {b}}_{1,2}^{2a} \int \limits _2^\infty \! dx\, \left( x - 1\right) ^{a - 1} e^{ - {\mathfrak {b}}_{1,2} (1 + z)x} \\&= {\mp } 2T_{1,2} \int \limits _0^\infty \! dz\, (1 + z)^{a - 1}\, {\mathfrak {b}}_{1,2}^a\, e^{ - {\mathfrak {b}}_{1,2}(1 + z)}\, \Gamma \! \left( a,{\mathfrak {b}}_{1,2}(1 + z) \right) \\&= \pm T_{1,2} \int \limits _0^\infty \! dz\, \frac{d}{dz} \Gamma ^2\! \left( a,{\mathfrak {b}}_{1,2}(1 + z) \right) \\&= \pm T_{1,2}\, \Gamma ^2 \left( a,{\mathfrak {b}}_{1,2}(1 + z) \right) \left| {\begin{array}{*{20}{l}} {^{z \rightarrow \infty }}\\ {_{z \rightarrow 0}} \end{array}} \right. = {\mp } T_{1,2}\, \Gamma ^2\left( {a,{\mathfrak {b}}_{1,2}} \right) . \end{aligned}$$

Therefore, one finds

$$\begin{aligned} {I_{1,2}} = {\mp } T_{1,2}\, \Gamma ^2\! \left( a,\frac{\mu }{T_{1,2}} \right) . \end{aligned}$$
(D.27)

In the previous computations we have used the following integral representation of the incomplete gamma function

$$\begin{aligned} \Gamma (a,t) = t^a\, e^{-t} \int \limits _0^\infty \frac{ e^{ -zt}}{(1 + z)^{1-a} }dz. \end{aligned}$$
(D.28)

With similar calculations for \(I_{3,4}\), one finds

$$\begin{aligned} I_{3,4}&= \pm 2\mu \int \limits _0^{1/2}\! d\omega \, \omega ^{a-2}\, (1-\omega )^{a-1} \,\Gamma \! \left( 2a-1,\frac{{\mathfrak {b}}_{1,2}}{\omega } \right) \\&= \pm 2\mu \int \limits _0^{1/2}\! d\omega \, \omega ^{a-2}\, (1-\omega )^{a-1} \left( \frac{{\mathfrak {b}}_{1,2}}{\omega } \right) ^{2a-1} e^{ -\frac{{\mathfrak {b}}_{1,2}}{\omega }} \int \limits _0^\infty \frac{e^{ - \frac{{\mathfrak {b}}_{1,2}}{\omega }z}}{(1 + z)^{2 - 2a} } \,dz\\&= \pm 2\mu \int \limits _0^\infty \! dz\, (1+z)^{2a-2}\, {\mathfrak {b}}_{1,2}^{2a-1} \int \limits _0^{1/2}\! d\omega \, \frac{1}{\omega ^2} \left( \frac{1}{\omega } - 1 \right) ^{a - 1} e^{ -\frac{{\mathfrak {b}}_{1,2}}{\omega }(1 + z)} \, \\&= \pm 2\mu \int \limits _0^\infty \! dz\, (1+z)^{2a-2}\, {\mathfrak {b}}_{1,2}^{2a-1} \int \limits _0^{1/2}\! d\left( \frac{-1}{\omega } \right) \! \left( \frac{1}{\omega } -1 \right) ^{a-1} e^{ -\frac{{\mathfrak {b}}_{1,2}}{\omega }(1+z)} \\&= \left\{ {x = \frac{1}{\omega } = \left\{ \begin{array}{l} 2,\quad \,\,\, \omega = 1/2,\\ \infty ,\quad \omega = 0 \end{array} \right. } \right\} \\&= \pm 2\mu \int \limits _0^\infty \! dz\, (1+z)^{2a-2}\, {\mathfrak {b}}_{1,2}^{2a-1} \int \limits _2^\infty \! dx\, \left( x-1 \right) ^{a-1} e^{ -{\mathfrak {b}}_{1,2}(1+z)x} \\&= \pm 2\mu \int \limits _0^\infty \! dz\, (1+z)^{a-2}\, {\mathfrak {b}}_{1,2}^{a-1}\, e^{ - {\mathfrak {b}}_{1,2}(1 + z)}\, \Gamma \! \left( a,{\mathfrak {b}}_{1,2} (1+z) \right) . \end{aligned}$$

Now we use

$$\begin{aligned}&\Gamma (a,{\mathfrak {b}}(z + 1)) = {e^{ - {\mathfrak {b}}(z + 1)}}{{\mathfrak {b}}^{a - 1}}{(z + 1)^{a - 1}} \nonumber \\&\quad - \frac{1}{2}(a - 1){(z + 1)^{2 - a}}{{\mathfrak {b}}^{1 - a}}{e^{{\mathfrak {b}}(z + 1)}}\frac{d}{{dz}}\Gamma ^2 (a - 1,{\mathfrak {b}}(z + 1)), \end{aligned}$$
(D.29)

thus

$$\begin{aligned} I_{3,4}&= {\mp } (a-1)\mu \int \limits _0^\infty \! dz\, \frac{d}{dz} \Gamma ^2 (a-1,{\mathfrak {b}}_{1,2} (z + 1)) \,\pm \, 2\mu {\mathfrak {b}}_{1,2}^{2a-2} \int \limits _0^\infty \! dz\, (z + 1)^{2a-3}\, e^{ -2{\mathfrak {b}}_{1,2} (z + 1)}\\&= {\mp } (a - 1)\mu \, \Gamma ^2\! \left( a-1, {\mathfrak {b}}_{1,2}(z+1)\right) \left| \begin{array}{l} ^{z \rightarrow \infty }\\ _{z \rightarrow 0} \end{array} \right. \pm \, 2^{3-2a}\mu \, \Gamma (2a-2,2{\mathfrak {b}}_{1,2})\\&= \pm (a - 1)\mu \, \Gamma ^2 (a - 1,{\mathfrak {b}}_{1,2}) \,\pm \, 2^{3 - 2a}\mu \, \Gamma (2a - 2,2{\mathfrak {b}}_{1,2}). \end{aligned}$$

Therefore, one has

$$\begin{aligned} I_{3,4} = \pm \mu \left[ (a-1)\, \Gamma ^2\! \left( a-1,\frac{\mu }{T_{1,2}} \right) + 2^{3-2a}\, \Gamma \! \left( 2a-2,\frac{2\mu }{T_{1,2}} \right) \right] . \end{aligned}$$
(D.30)

Putting everything together we get the complete expression for \(J_2\), namely

$$\begin{aligned} J_2&= (T-\epsilon )\left( \Gamma ^2 (a) - 2\Gamma (2a)\, {\mathcal {B}}_{1/2}(a,a) \right) \,+\, T\,\Gamma ^2\! \left( a,\frac{\mu }{T} \right) - \epsilon \, \Gamma ^2\! \left( a,\frac{\mu }{\epsilon } \right) \nonumber \\&\quad + \mu \left( (a-1)\, \Gamma ^2\! \left( a-1,\frac{\mu }{\epsilon } \right) + 2^{3-2a}\, \Gamma \! \left( 2a-2,\frac{2\mu }{\epsilon } \right) \right) \nonumber \\&\quad - \mu \left( (a - 1)\, \Gamma ^2\! \left( a-1,\frac{\mu }{T} \right) + 2^{3-2a}\, \Gamma \! \left( 2a-2, \frac{2\mu }{T} \right) \right) . \end{aligned}$$
(D.31)

The final expression for the holographic Fisher metric yields

$$\begin{aligned} {G_{\lambda \lambda }^{Bulk}}&= \frac{a_0}{\mu ^{a}} (T - \epsilon ) \,+\, a_1 \frac{T^{2 - a} e^{ -\frac{\mu }{T}}}{\mu } \, \Gamma \! \left( a-2,\frac{\mu }{T} \right) \,+\, \frac{a_2}{\mu ^{a-1}}\, \Gamma ^2\! \left( a-2,\frac{\mu }{T} \right) \nonumber \\&\quad + \frac{a_3}{\mu ^{a-1}}\, \Gamma \! \left( 2a - 4,\frac{2\mu }{T} \right) \,+\, \frac{a_4}{\mu ^{a-1}}\, \Gamma \! \left( 2a-2,\frac{2\mu }{T} \right) \,+\, \frac{a_5}{\mu ^{a-1}}\, \Gamma \! \left( 2a-3,\frac{2\mu }{T} \right) \nonumber \\&\quad + a_6 \frac{T}{\mu ^a}\, \Gamma ^2\! \left( a,\frac{\mu }{T} \right) \,+\, \frac{a_7}{\mu ^{a-1}}\, \Gamma ^2\! \left( a-1,\frac{\mu }{T} \right) \nonumber \\&\quad + b_1 \frac{\epsilon ^{2-a}}{\mu }\, e^{ -\frac{\mu }{\epsilon }}\, \Gamma \! \left( a-2,\frac{\mu }{\epsilon } \right) \,+\, \frac{b_2}{\mu ^{a-1}}\, \Gamma ^2\! \left( a-2,\frac{\mu }{\epsilon } \right) \nonumber \\&\quad + \frac{b_3}{\mu ^{a-1}}\, \Gamma \! \left( 2a-4,\frac{2\mu }{\epsilon } \right) \,+\, \frac{b_4}{\mu ^{a-1}}\, \Gamma \! \left( 2a-2,\frac{2\mu }{\epsilon } \right) \,+\, \frac{b_5}{\mu ^{a-1}}\, \Gamma \! \left( 2a-3,\frac{2\mu }{\epsilon } \right) \nonumber \\&\quad + b_6 \frac{\epsilon }{\mu ^{a}}\, \Gamma ^2\! \left( a,\frac{\mu }{\epsilon } \right) \,+\, \frac{b_7}{\mu ^{a-1}}\, \Gamma ^2\! \left( a-1,\frac{\mu }{\epsilon } \right) , \end{aligned}$$
(D.32)

with coefficients \(a_i=-b_i\), \(i=1,\dots , 7\), where

$$\begin{aligned} \begin{aligned}&{a_0} = \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{2^{a+1}\kappa } M^a \left[ {{2c_0} + {c_2}\left( {{\Gamma ^2}\left( a \right) - 2\Gamma (2a)\, {\mathcal {B}}_{1/2} (a,a)} \right) } \right] , \\&{a_1} = - {b_1} = \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{2\kappa }}{c_1}(a - 1)(a - 2), \\&{a_2} = - {b_2} = \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{4\kappa }}{c_1}{(a - 1)}(a - 2)^2, \\&{a_3} = - {b_3} = - \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{2^{2a-3}\kappa }} c_1(a - 1)(a - 2), \\&{a_4} = - {b_4} = \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{2^{3a-1}\kappa }} \left( 2^a {c_1}-2 {c_2} M^a\right) , \\&{a_5} = - {b_5} = \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{2^{2a-2}\kappa }} c_1 (a - 1), \\&{a_6} = - {b_6} = \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{2^{a+1}\kappa }} M^{a} c_2,\\&{a_7} = - {b_7} = - \frac{{{L^{d }}{V_{{{\mathbb {R}}^d}}}}}{{2^{a+1}\kappa }} M^{a} c_2(a - 1), \end{aligned} \end{aligned}$$
(D.33)

where \({\mathcal {B}}\) is the incomplete beta function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimov, H., Iliev, I.N., Radomirov, M. et al. Holographic Fisher information metric in Schrödinger spacetime. Eur. Phys. J. Plus 136, 1128 (2021). https://doi.org/10.1140/epjp/s13360-021-02109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02109-0

Navigation