Skip to main content
Log in

Investigation of room-temperature ferromagnetism in \(\hbox {SrTiO}_3\) perovskite structure via substitutional doping

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The C and N atomic doping and co-doping at all possible lattice sites in \(\hbox {SrTiO}_3\) (STO) perovskite crystal structure have been investigated using density functional theory (DFT) calculations. Calculated formation energies indicate that C and N doping at O site in STO is more stable than at Sr site and Ti site. C incorporation at anion site significantly affects the electronic bandgap of STO by inducing spin-polarized defect states in bandgap region. Consequently transforming the non-magnetic STO to a magnetic with a magnetic moment of 2.0 \(\mu _{\mathrm{{B}}}\) per C atom and reduced the direct (indirect) bandgap 0.86 eV (0.18 eV) for spin-up (spin-down) channel, respectively. Further, with an increase of C atom concentration the magnetic moment of 2.0 \(\mu _{\mathrm{{B}}}\) per C atom remains constant, and also, half-metallicity is observed due to spin-down channel. Similarly, N atom substitution at anion site in STO crystal structure induces magnetism of 1.0 \(\mu _{\mathrm{{B}}}\). N causes defect states due to which the bandgap of the spin-up channel decreased to 1.68 eV and shows half-metallicity due to the spin-down channel. We found that further increasing the N atom concentration enhanced the half-metallicity by increasing the number of states of the spin-down channel at Fermi energy. Finally, we studied the FM and AFM alignment of the magnetic moments at the dopants C, N and their co-doping in STO with different distances. We found that the C atom prefers AFM states, while the N atom prefers FM states. The calculated Curie temperature \(\hbox {T}_c\) for two N atoms at near and far dopants is 722.16 K and 860.91 K, respectively. The results of tailored electronic and magnetic properties above room temperature are interesting from a theoretical perspective and may open opportunities for STO in electronic and spintronic devices.

Graphic Abstract

(a) Side view of \(2 \times 2 \times 2\) supercell of SrTiO3 (STO) perovskite crystal structure. (b) Top view of the translationally asymmetric STO conventional cell of a \(2 \times 2 \times 2\) supercell indicating the possible doping sites. (c) For FM and AFM calculations, we considered two positions: near interacting positions denoted as (1, 2) and far interacting positions denoted as (1, 3), to study the dopants interactions. The red circles denote host O sites. In FM interaction, both atoms have positive magnetization (spin-up), while in AFM calculations, one of the two dopants has negative magnetization (spin-down)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. P. Esquinazi, D. Spemann, R. Hohne, A. Setzer, K.H. Han, T. Butz, Phys. Rev. Lett. 91, 227201 (2003)

    Article  ADS  Google Scholar 

  2. H. Ohldag, T. Tyliszczak, R. Hoehne, D. Spemann, P. Esquinazi, M. Ungureanu, T. Butz, Phys. Rev. Lett. 98, 187204 (2007)

    Article  ADS  Google Scholar 

  3. J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev. B 72, 024450 (2005)

    Article  ADS  Google Scholar 

  4. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  5. J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, N. J. Phys. 12, 053025 (2010)

    Article  Google Scholar 

  6. C.D. Pemmaraju, S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005)

    Article  ADS  Google Scholar 

  7. J.B. Yi et al., Phys. Rev. Lett. 104, 137201 (2010)

    Article  ADS  Google Scholar 

  8. V. Bhosle, A. Tiwari, J. Narayan, Appl. Phys. Lett. 88, 032106 (2006)

    Article  ADS  Google Scholar 

  9. V. Bhosle, J. Narayan, Appl. Phys. Lett. 93, 021912 (2008)

    Article  ADS  Google Scholar 

  10. G. Bouzerar, T. Ziman, Phys. Rev. Lett. 96, 207602 (2006)

    Article  ADS  Google Scholar 

  11. G. Rahman, RSC Adv. 5, 33674 (2015)

    Article  ADS  Google Scholar 

  12. K. Potzger et al., J. Magn. Magn. Mater. 323, 1551–1562 (2011)

    Article  ADS  Google Scholar 

  13. I.R. Shein, A.L. Ivanovskii, Phys. Lett. A 371, 155–159 (2007)

    Article  ADS  Google Scholar 

  14. V.V. Bannikov, I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, J. Magn. Magn. Mater. 320, 936–942 (2008)

    Article  ADS  Google Scholar 

  15. H.C. Li, S. Weidong, W.D. Alexander, X.X. Xi, Appl. Phys. Lett. 73, 464 (1998)

    Article  ADS  Google Scholar 

  16. M. Marzouk, H.M. Hashem, S. Soltan, A.A. Ramadan, J. Mater. Sci. Mater. Electr. 31, 5599–5607 (2020)

    Article  Google Scholar 

  17. G. Rahman, A.U. Rahman, Phys. B 526, 122–126 (2017)

    Article  ADS  Google Scholar 

  18. J.U. Rahman et al., J. Eur. Ceram. Soc. 39, 358–365 (2019)

    Article  Google Scholar 

  19. F. Ernst, O. Kienzle, M. Ruhle, J. Eur. Ceram. Soc. 19, 665 (1999)

    Article  Google Scholar 

  20. A.K. Padhana, D.R. Sahu, B.K. Roul, Y. Feng, J. Appl. Phys. 96, 1170 (2004)

    Article  ADS  Google Scholar 

  21. A. Mikuta, E. Drozdz, A. Kolezynski, J. Alloy. Compd. 749, 931–938 (2018)

    Article  Google Scholar 

  22. A. Uedono, K. Shimayama, M. Kiyohara, Z.Q. Chen, K. Yamabe, J. Appl. Phys. 92, 2697 (2002)

    Article  ADS  Google Scholar 

  23. H. Yu, J. Wang, S. Yan, T. Yu, Z. Zou, J. Photochem. Photobiol., A: Chem. 275, 65–71 (2014)

    Article  Google Scholar 

  24. R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 108, 8992–8995 (2004)

    Article  Google Scholar 

  25. X. Zhou, J. Shi, C. Li, J. Phys. Chem. CA 115, 8305–8311 (2011)

    Article  Google Scholar 

  26. H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, J. Mater. Chem. 21, 11347–11351 (2011)

    Article  Google Scholar 

  27. J. Wang, S. Yin, M. Komatsu, T. Sato, J. Euro. Ceram. Soc. 25, 3207–3212 (2004)

    Article  Google Scholar 

  28. P.S. Konstas, I. Konstantinou, D. Petrakis, T. Albanis, Catalysts 8, 528 (2018)

    Article  Google Scholar 

  29. F. Zou, Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiao, P.P. Edwards, Chem. Commun. 48, 8514–8516 (2012)

    Article  Google Scholar 

  30. S. Middey, C. Meneghini, S. Ray, Appl. Phys. Lett. 101, 042406 (2012)

    Article  ADS  Google Scholar 

  31. A.U. Rahman, G. Rahman, P. Kratzer, J. Phys. Condens. Matter 30, 195805 (2018)

    Article  ADS  Google Scholar 

  32. A.U. Rahman et al., Phys. B 570, 209–216 (2019)

    Article  ADS  Google Scholar 

  33. R. Khan, A.U. Rahman, Q. Zhang, P. Kratzer, S.M. Ramay, J. Phys. Condens. Matter 33, 314003 (2021)

    Article  ADS  Google Scholar 

  34. A.U. Rahman, H. Ullah, M. Verma, S. Khan, J. Magn. Magn. Mater. 515, 167212 (2020)

    Article  Google Scholar 

  35. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 71 (1964)

    Article  Google Scholar 

  36. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  37. ...P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococ-cioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcov-itch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  39. A. Tkatchenko, M. Scheer, Phys. Rev. Lett. 102, 073005 (2009)

    Article  ADS  Google Scholar 

  40. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  41. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  42. R.S. Mulliken, J. Chem. Phys. 23, 1841 (1955)

    Article  ADS  Google Scholar 

  43. J. He, K. Wu, R. Sa, Q. Li, Y. Wei, Appl. Phys. Lett. 96, 082504 (2010)

    Article  ADS  Google Scholar 

  44. Y.A. Abramov, V.G. Tsirelson, Acta Crys. B 51, 942 (1995)

    Article  Google Scholar 

  45. A.U. Rahman, J.M. Morbec, G. Rahman, P. Kratzer, Phys. Rev. Mat. bf 2, 094002 (2018)

    Google Scholar 

  46. H.F. Liu, Solid State Commun. 152, 2063–2065 (2012)

    Article  ADS  Google Scholar 

  47. K. Yang, Y. Dai, B. Huang, Appl. Phys. Lett. 100, 062409 (2012)

    Article  ADS  Google Scholar 

  48. F. Lin, S. Wang, F. Zheng, G. Zhou, J. Wu, B.-L. Gu, W. Duan, Phys. Rev. B 79, 035311 (2009)

    Article  ADS  Google Scholar 

  49. H. Zeng, M. Wu, H.Q. Wang, J.C. Zheng, J. Kang, Materials 13, 5686 (2020)

    Article  ADS  Google Scholar 

  50. N. Li, K.L. Yao, AIP Adv. 2, 032135 (2012)

    Article  ADS  Google Scholar 

  51. K. Van Benthem, C. Elsasser, J. Appl. Phys. 90, 6156 (2001)

    Article  ADS  Google Scholar 

  52. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Phys. B 406, 2254 (2011)

    Article  ADS  Google Scholar 

  53. J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Appl. Phys. Lett. 102, 012111 (2013)

    Article  ADS  Google Scholar 

  54. S. Bhattacharyya, A.K. Singh, Phys. Rev. B Condens. Matter Mater. Phys. 86, 075454 (2012)

    Article  ADS  Google Scholar 

  55. C.M. Liu, X. Xiang, X.T. Zu, Chin. J. Phys. 47, 893 (2009)

    Google Scholar 

  56. X. Tan, C. Chen, K. Jin, B. Luo, J. Alloys Compd. 509, L311 (2011)

    Article  Google Scholar 

  57. A.U. Rahman et al., J. Phys. Chem. Solids 161, 110380 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Super-Computing Facility at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology funded by the Directorate of Science and Technology (DoST), Government of Khyber Pakhtunkhwa, and National Center for Physics (NCP) Islamabad, Pakistan. Density functional theory calculations were performed using Oracle Cloud Infrastructure. The author (A. Dahshan) extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number (RGP.2/89/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf Ur Rahman.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.U., Ali, S., Awan, A.A. et al. Investigation of room-temperature ferromagnetism in \(\hbox {SrTiO}_3\) perovskite structure via substitutional doping. Eur. Phys. J. Plus 136, 1137 (2021). https://doi.org/10.1140/epjp/s13360-021-02085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02085-5

Navigation