Skip to main content
Log in

Relativistic Aharonov–Casher effect in 1+2-dimensional Gürses spacetime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we investigate the topological effects of spacetime on the Dirac oscillator in the presence of the Aharonov–Casher effect. We establish the Dirac equation that defines the model. The energy spectrum and wave functions are derived as a function of various physical parameters involved in the problem. The energy spectrum of the oscillator is studied in detail. An important conclusion is that the combined influence of parameters changes the allowed energy states of the oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. It\({\hat{o}}\), K. Mori and E. Carriere, Nuovo Cimento A 51, 1119 (1967)

  2. M. Moshinsky, A. Szczepaniak, J. Phys. A: Math. Gen. 22, L812 (1989)

    Article  Google Scholar 

  3. R.P. Martínez-y-Remero, H.N. N\(\acute{u}{\tilde{n}}\)es-Y\(\acute{e}\)pez, A.L. Salas-Brito, J. Math. Phys. 33, 1831 (1992)

  4. M. Moreno, A. Zentella, J. Phys. A Math. Gen. 22, L821 (1989)

    Article  ADS  Google Scholar 

  5. C. Quesne, M. Moshinsky, J. Phys. A Math. Gen. 23, 2263 (1990)

    Article  ADS  Google Scholar 

  6. J. Beckers, N. Debergh, Phys. Rev. D 42, 1255 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Cai, T. Jing, G. Guo, R. Zhang, Int. J. Theor. Phys. 49(8), 1699 (2010)

    Article  Google Scholar 

  8. J. Grineviciute, D. Halderson, Phys. Rev. C 80, 044607 (2009)

    Article  ADS  Google Scholar 

  9. Y.X. Wang, J. Cao, S.J. Xiong, Eur. Phys. J. B 85, 237 (2012)

    Article  ADS  Google Scholar 

  10. S. Longhi, Opt. Lett. 35, 1302 (2010)

    Article  ADS  Google Scholar 

  11. A. Boumali, Phys. Scr. 90, 045702 (2015)

    Article  ADS  Google Scholar 

  12. J.A. Neto, M.J. Bueno, C. Furtado, Ann. Phys. 373, 273 (2016)

    Article  ADS  Google Scholar 

  13. J.A. Neto, J.R. de S. Oliveira, C. Furtado, S. Sergeenkov, Eur. Phys. J. Plus 133, 185 (2018)

  14. M.J. Bueno, J.L. de Melo, C. Furtado, A.M. de M. Carvalho, Eur. Phys. J. Plus 129, 201 (2014)

  15. P. Rozmej, R. Arvieu, J. Phys. A. Math. Gen. 32, 5367 (1999)

    Article  ADS  Google Scholar 

  16. J. A. Franco-Villafañe, E. Sadurnı, S. Barkhofen, U. Kuhl, F. Mortessagne, T. H. Seligman, Phys. Rev. Lett. 111(17), 170405 (2013)

  17. Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Cimmino, G.I. Opat, A.G. Klein, H. Kaiser, S.A. Werner, M. Arif, R. Clothier, Phys. Rev. Lett. 63, 380 (1989)

    Article  ADS  Google Scholar 

  19. K. Sangster, E.A. Hinds, S.M. Barnett, E. Riis, Phys. Rev. Lett. 71, 3641 (1993)

    Article  ADS  Google Scholar 

  20. W.J. Elion, J.J. Wachters, L.L. Sohn, J.E. Mooij, Phys. Rev. Lett. 71, 2311 (1993)

    Article  ADS  Google Scholar 

  21. C. Furtado, C.A. de L. Ribeiro, Phys. Rev. A 69, 064104 (2004)

  22. C.R. Hagen, Phys. Rev. Lett. 64, 2347 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. E.O. Silva, F.M. Andrade, C. Filgueiras, H. Belich, Eur. Phys. J. C 73, 2402 (2013)

    Article  ADS  Google Scholar 

  24. R.R.S. Oliveria, M.F. Sousa, Braz. J. Phys. 49, 315 (2019)

    Article  ADS  Google Scholar 

  25. S.A. Bruce, J.F. Diaz-Valdes, Eur. Phys. J. A 56, 191 (2020)

    Article  ADS  Google Scholar 

  26. R.R.S. Oliveria, V.F.S. Borges, M.F. Sousa, Braz. J. Phys. 49, 801 (2019)

    Article  ADS  Google Scholar 

  27. M. Hosseinpour, H. Hassanabadi, M. de Montigny, Eur. Phys. J. C 79, 311 (2019)

    Article  ADS  Google Scholar 

  28. P. Strange, L.H. Rayder, Phys. Lett. A 380, 3465 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Bakke, Eur. Phys. J. Plus 127, 82 (2012)

    Article  ADS  Google Scholar 

  30. K. Bakke, C. Furtado, Ann. Phys. 336, 489 (2013)

    Article  ADS  Google Scholar 

  31. R.R.S. Oliveira, Eur. Phys. J. C 79, 725 (2019)

    Article  ADS  Google Scholar 

  32. R.R.S. Oliveira, Gen. Rel. Grav. 52, 88 (2020)

    Article  ADS  Google Scholar 

  33. M.M. Cunha, H.S. Dias, E.O. Silva, Phys. Rev. D 102, 105020 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Gürses, Class. Quantum Grav. 11, 2585 (1994)

  35. F. Ahmed, Ann. Phys. 404, 1 (2019)

    Article  ADS  Google Scholar 

  36. F. Ahmed, Ann. Phys. 401, 193 (2019)

    Article  ADS  Google Scholar 

  37. B. Mashhoon, Phys. Lett. A 173, 347 (1993)

    Article  ADS  Google Scholar 

  38. G. Sagnac, Compt. Rend. 157, 708 and 1410 (1913)

  39. M. Abramowitz, I. Stegun, Handbook of Mathematical Function with Formulas, Graphs and Mathematical Tables (U.S. Goverment Printing Office, Washington, 1972)

    MATH  Google Scholar 

  40. N. Byers, N.C. Yang, Phys. Rev. Lett. 7, 46 (1961)

    Article  ADS  Google Scholar 

  41. A.V. Balatsky, B.L. Altshuler, Phys. Rev. Lett. 70, 1678 (1993)

    Article  ADS  Google Scholar 

  42. S. Oh, C.-M. Ryu, Phys. Rev. B 51, 13441 (1995)

    Article  ADS  Google Scholar 

  43. K. Bakke, C. Furtado, Eur. Phys. B 86, 315 (2013)

    Article  ADS  Google Scholar 

  44. W.C. Tan, J.C. Inkson, Phys. Rev. B 60, 5626 (1999)

    Article  ADS  Google Scholar 

  45. B.A. Bernevig, T.L. Hugnes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  46. M. Pang, X.G. Wu, Phys. Rev. B 88, 235309 (2013)

    Article  ADS  Google Scholar 

  47. S.S. Krishtopenko, W. Knap, F. Teppe, Sci. Rep. 6, 30755 (2016)

    Article  ADS  Google Scholar 

  48. S.S. Krishtopenko, F. Teppe, Phys. Rev. B 97, 165408 (2018)

    Article  ADS  Google Scholar 

  49. S.S. Krishtopenko, W. Desrat, K.E. Spirin, C. Consejo, S. Ruffenach, F. Gonzalez-Posada, B, Jouault, W. Knap, K.V. Maremyanin, V.I. Gavrilenko, G. Boissier, J. Torres, M. Zaknoune, E. Tourni\(\acute{e}\), F. Teppe, Phys. Rev. B, 99, 121405R (2019)

  50. A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 88, 021004 (2016)

    Article  ADS  Google Scholar 

  51. X.-Li Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

Download references

Acknowledgements

This work was supported by Eskisehir Technical University Commission of Research Projects under Grant no: 20ADP089

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Candemir.

Appendix A. (1+2) dimensions Gürses metric

Appendix A. (1+2) dimensions Gürses metric

The spacetime metric considered by Gürses in three dimensions [34] (see Eq. (7) , notations are same) is given in the form

$$\begin{aligned} ds^{2}=\phi dt^{2}-2 qdt d\varphi -\frac{-q+h^{2}\psi }{\phi }d\varphi ^{2}-\frac{1}{\psi }dr^{2} \end{aligned}$$
(A.1)

where

$$\begin{aligned} \phi =a_{0},~~~~~~~~~~\psi =b_{0}+\frac{b_{1}}{r^{2}}+\frac{3\lambda _{0}}{4}r^{2}, ~~~~~~~~~~\nonumber \\ q=c_{0}+\frac{e_{0}\mu }{3}r^{2},~~~~~~~~~~~h=e_{0}r,~~~~~~~~~~~~~~~~~~~~~ \lambda _{0}=\lambda +\frac{\mu ^{2}}{27} \end{aligned}$$
(A.2)

and \(a_{0}, b_{0}, b_{1}, c_{0}, e_{0}\) are arbitrary constants.

After the constants in (A.2), [35] are chosen as

$$\begin{aligned} b_{1}=0,~~~~~~~~~~~~~~~~ c_{0}=0,~~~~~~~~~~~~~~~~\lambda _{0}=0 \end{aligned}$$
(A.3)

substituting the found forms of \(\phi ,\psi ,h, q,\) in (A.1), the spacetime metric takes on the following new form

$$\begin{aligned} ds^{2}=a_{0} dt^{2}-\frac{2 e_{0}\mu }{3}r^{2}dt d\varphi -\frac{1}{a_{0}}(e_{0}^{2}b_{0}r^{2}-\frac{e_{0}^{2}\mu ^{2}}{9}r^{4})d\varphi ^{2}- \frac{1}{b_{0}}dr^{2} \end{aligned}$$
(A.4)

Finally, choosing the constants in (A4) as

$$\begin{aligned} a_{0}=1,~~~~~~~~~~~~~~~~ b_{0}=1,~~~~~~~~~~~~~~~~e_{0}=1,~~~~~~~~~~~~~~~~\varOmega =-\frac{\mu }{3} \end{aligned}$$
(A.5)

(1+2) dimensions Gürses metric (7) presented in this work became

$$\begin{aligned} ds^{2}= dt^{2} -dr^{2}+2\varOmega r^{2}dt d\varphi -r^{2}(1-\varOmega ^{2} r^{2})d\varphi ^{2} \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candemir, N. Relativistic Aharonov–Casher effect in 1+2-dimensional Gürses spacetime. Eur. Phys. J. Plus 136, 1077 (2021). https://doi.org/10.1140/epjp/s13360-021-02079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02079-3

Navigation