Skip to main content

Advertisement

Log in

Epicyclic orbits in the field of Einstein–Dirac–Maxwell traversable wormholes applied to the quasiperiodic oscillations observed in microquasars and active galactic nuclei

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the epicyclic oscillatory motion around circular orbits of the traversable asymptotically flat and reflection-symmetric wormholes obtained in the Einstein–Dirac–Maxwell theory without applying exotic matter in their construction. We determine frequencies of the orbital and epicyclic motion in the Keplerian disks having inner edge at the marginally stable circular geodesic of the spacetime. The obtained frequencies are applied in the so-called geodesic models of high-frequency quasiperiodic oscillations (HF QPOs) observed in microquasars and active galactic nuclei containing a supermassive central object. We show that even the simplest epicyclic resonance variant of the geodesic models can explain the HF QPOs observed in many active galactic nuclei for realistic choices of the wormhole parameters, but there are some of the sources where only wormholes with unrealistically large values of the parameters can be sufficient for the explanation. On the other hand, in the case of microquasars, the observed HF QPOs strongly restrict the acceptable values of the wormhole parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Abdujabbarov, B. Juraev, B. Ahmedov, Z. Stuchlík, Shadow of rotating wormhole in plasma environment. Astrophys. Space Sci. 361(7), 226 (2016). https://doi.org/10.1007/s10509-016-2818-9

    Article  ADS  MathSciNet  Google Scholar 

  2. M.A. Abramowicz, W. Kluźniak, A precise determination of black hole spin in GRO J1655–40. Astron. Astrophys. 374, L19–L20 (2001). https://doi.org/10.1051/0004-6361:20010791

    Article  ADS  Google Scholar 

  3. M. Blaschke, Z. Stuchlík, Efficiency of the Keplerian accretion in braneworld Kerr-Newman spacetimes and mining instability of some naked singularity spacetimes. Phys. Rev. D 94(8), 086006 (2016). https://doi.org/10.1103/PhysRevD.94.086006

    Article  ADS  MathSciNet  Google Scholar 

  4. J.L. Blázquez-Salcedo, C. Knoll, E. Radu, Traversable Wormholes in Einstein-Dirac-Maxwell Theory. Phys. Rev. Lett. 126(10), 101102 (2021). https://doi.org/10.1103/PhysRevLett.126.101102

    Article  ADS  MathSciNet  Google Scholar 

  5. J.L. Blázquez-Salcedo, C. Knoll, E. Radu. Einstein-Dirac-Maxwell wormholes: ansatz, construction and properties of symmetric solutions. arXiv e-prints, art. arXiv:2108.12187, (Aug. 2021b)

  6. M. Bouhmadi-López, C.-Y. Chen, X.Y. Chew, Y.C. Ong, D.-H. Yeom. Traversable Wormhole in Einstein 3-Form Theory With Self-Interacting Potential. arXiv e-prints, art. arXiv:2108.07302, (Aug. 2021)

  7. K.A. Bronnikov, R.A. Konoplya, T.D. Pappas, General parametrization of wormhole spacetimes and its application to shadows and quasinormal modes. Phys. Rev. D 103(12), 124062 (2021). https://doi.org/10.1103/PhysRevD.103.124062

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Cardoso, E. Franzin, P. Pani, Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? Phys. Rev. Lett. 116(17), 171101 (2016). https://doi.org/10.1103/PhysRevLett.116.171101

    Article  ADS  Google Scholar 

  9. M.S. Churilova, Z. Stuchlík, Ringing of the regular black-hole/wormhole transition. Class. Quantum Gravity 37(7), 075014 (2020). https://doi.org/10.1088/1361-6382/ab7717

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M.S. Churilova, R.A. Konoplya, Z. Stuchlik, A. Zhidenko. Wormholes without exotic matter: quasinormal modes, echoes and shadows. arXiv e-prints, art. arXiv:2107.05977, (July 2021)

  11. T. Damour, S.N. Solodukhin, Wormholes as black hole foils. Phys. Rev. D 76(2), 024016 (2007). https://doi.org/10.1103/PhysRevD.76.024016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. E. Deligianni, B. Kleihaus, J. Kunz, P. Nedkova, S. Yazadjiev, Quasiperiodic oscillations in rotating Ellis wormhole spacetimes. Phys. Rev. D 104(6), 064043 (2021). https://doi.org/10.1103/PhysRevD.104.064043

    Article  ADS  MathSciNet  Google Scholar 

  13. E. Deligianni, J. Kunz, P. Nedkova, S. Yazadjiev, R. Zheleva. Quasi-periodic oscillations from the accretion disk around rotating traversable wormholes. arXiv e-prints, art. arXiv:2103.13504, (Mar. 2021b)

  14. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Modified-gravity wormholes without exotic matter. Phys. Rev. D 87(6), 067504 (2013). https://doi.org/10.1103/PhysRevD.87.067504

    Article  ADS  Google Scholar 

  15. W. Kluzniak, M.A. Abramowicz, Strong-Field Gravity and Orbital Resonance in Black Holes and Neutron Stars—kHz Quasi-Periodic Oscillations (QPO). Acta Physica Polonica B 32(11), 3605 (2001)

    ADS  Google Scholar 

  16. M. Kološ, Z. Stuchlík, A. Tursunov, Quasi-harmonic oscillatory motion of charged particles around a Schwarzschild black hole immersed in a uniform magnetic field. Class. Quantum Gravity 32(16), 165009 (2015). https://doi.org/10.1088/0264-9381/32/16/165009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. Kološ, A. Tursunov, Z. Stuchlík, Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars. Eur. Phys. J. C 77(12), 860 (2017). https://doi.org/10.1140/epjc/s10052-017-5431-3

    Article  ADS  Google Scholar 

  18. R.A. Konoplya, A. Zhidenko. Traversable wormholes in General Relativity without exotic matter. arXiv e-prints, art. arXiv:2106.05034, (June 2021)

  19. J. Maldacena, A. Milekhin, F. Popov. Traversable wormholes in four dimensions. arXiv e-prints, art. arXiv:1807.04726, (July 2018)

  20. J. Mazza, E. Franzin, S. Liberati, A novel family of rotating black hole mimickers. JCAP 2021(4), 082 (2021). https://doi.org/10.1088/1475-7516/2021/04/082

    Article  MathSciNet  Google Scholar 

  21. J.E. McClintock, R.A. Remillard, Black hole binaries, vol. 39 (Cambridge University Press, Cambridge, 2006), pp. 157–213

    Google Scholar 

  22. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman Princeton University Press, Princeton, 1973)

    Google Scholar 

  23. M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61(13), 1446–1449 (1988). https://doi.org/10.1103/PhysRevLett.61.1446

    Article  ADS  Google Scholar 

  24. J. Novotný, J. Hladík, Z. Stuchlík, Polytropic spheres containing regions of trapped null geodesics. Phys. Rev. D 95(4), 043009 (2017). https://doi.org/10.1103/PhysRevD.95.043009

    Article  ADS  Google Scholar 

  25. E. Poisson, M. Visser, Thin-shell wormholes: Linearization stability. Phys. Rev. D 52(12), 7318–7321 (1995). https://doi.org/10.1103/PhysRevD.52.7318

    Article  ADS  MathSciNet  Google Scholar 

  26. R.A. Remillard, J.E. McClintock, X-Ray Properties of Black-Hole Binaries. Ann. Rev. Astron. Astrophys. 44(1), 49–92 (2006). https://doi.org/10.1146/annurev.astro.44.051905.092532

    Article  ADS  Google Scholar 

  27. L. Rezzolla, S. Yoshida, O. Zanotti, Oscillations of vertically integrated relativistic tori - I. Axisymmetric modes in a Schwarzschild space-time. Mon. Not. RAS 344(3), 978–992 (2003). https://doi.org/10.1046/j.1365-8711.2003.07023.x

    Article  ADS  Google Scholar 

  28. A. Simpson, M. Visser, Black-bounce to traversable wormhole. JCAP 2019(2), 042 (2019). https://doi.org/10.1088/1475-7516/2019/02/042

    Article  MathSciNet  Google Scholar 

  29. K.L. Smith, C.R. Tandon, R.V. Wagoner, Confrontation of Observation and Theory: High-frequency QPOs in X-Ray Binaries, Tidal Disruption Events, and Active Galactic Nuclei. Astrophys. J. 906(2), 92 (2021). https://doi.org/10.3847/1538-4357/abc9b7

    Article  ADS  Google Scholar 

  30. L. Stella, M. Vietri, S.M. Morsink, Correlations in the Quasi-periodic Oscillation Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession Model. Astrophys. J. Lett. 524(1), L63–L66 (1999). https://doi.org/10.1086/312291

    Article  ADS  Google Scholar 

  31. Z. Stuchlík, M. Kološ, Models of quasi-periodic oscillations related to mass and spin of the GRO J1655–40 black hole. Astron. Astrophys. 586, A130 (2016). https://doi.org/10.1051/0004-6361/201526095

    Article  ADS  Google Scholar 

  32. Z. Stuchlík, M. Kološ, Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field. Eur. Phys. J. C 76, 32 (2016). https://doi.org/10.1140/epjc/s10052-015-3862-2

    Article  ADS  Google Scholar 

  33. Z. Stuchlík, J. Schee, Appearance of Keplerian discs orbiting Kerr superspinars. Class. Quantum Gravity 27(21), 215017 (2010). https://doi.org/10.1088/0264-9381/27/21/215017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Z. Stuchlík, J. Schee, Ultra-high-energy collisions in the superspinning Kerr geometry. Class. Quantum Gravity 30(7), 075012 (2013). https://doi.org/10.1088/0264-9381/30/7/075012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Z. Stuchlík, A. Kotrlová, G. Török, Multi-resonance orbital model of high-frequency quasi-periodic oscillations: possible high-precision determination of black hole and neutron star spin. Astron. Astrophys. 552, A10 (2013). https://doi.org/10.1051/0004-6361/201219724

    Article  Google Scholar 

  36. Z. Stuchlík, S. Hledík, J. Novotný, General relativistic polytropes with a repulsive cosmological constant. Phys. Rev. D 94(10), 103513 (2016). https://doi.org/10.1103/PhysRevD.94.103513

    Article  ADS  Google Scholar 

  37. Z. Stuchlík, M. Blaschke, J. Schee, Particle collisions and optical effects in the mining Kerr-Newman spacetimes. Phys. Rev. D 96(10), 104050 (2017). https://doi.org/10.1103/PhysRevD.96.104050

    Article  ADS  Google Scholar 

  38. Z. Stuchlík, J. Schee, B. Toshmatov, J. Hladík, J. Novotný, Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos. JCAP 6, 056 (2017). https://doi.org/10.1088/1475-7516/2017/06/056

    Article  ADS  MathSciNet  Google Scholar 

  39. Z. Stuchlík, M. Kološ, J. Kovář, P. Slaný, A. Tursunov, Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes. Universe 6(2), 26 (2020). https://doi.org/10.3390/universe6020026

    Article  ADS  Google Scholar 

  40. Z. Stuchlík, J. Vrba. Epicyclic oscillations around simpson-visser regular black holes and wormholes. Universe, 7(8), (2021). ISSN 2218-1997. https://doi.org/10.3390/universe7080279. URL https://www.mdpi.com/2218-1997/7/8/279

  41. O. Svítek, T. Tahamtan, Nonsymmetric dynamical thin-shell wormhole in Robinson-Trautman class. Eur. Phys. J. C 78(2), 167 (2018). https://doi.org/10.1140/epjc/s10052-018-5628-0

    Article  ADS  Google Scholar 

  42. G. Török, Z. Stuchlík, Radial and vertical epicyclic frequencies of Keplerian motion in the field of Kerr naked singularities. Comparison with the black hole case and possible instability of naked-singularity accretion discs. Astron. Astrophys. 437(3), 775–788 (2005). https://doi.org/10.1051/0004-6361:20052825

    Article  ADS  Google Scholar 

  43. G. Török, M.A. Abramowicz, W. Kluźniak, Z. Stuchlík, The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars. Astron. Astrophys. 436(1), 1–8 (2005). https://doi.org/10.1051/0004-6361:20047115

    Article  ADS  Google Scholar 

  44. G. Török, A. Kotrlová, E. Šrámková, Z. Stuchlík, Confronting the models of 3:2 quasiperiodic oscillations with the rapid spin of the microquasar GRS 1915+105. Astron. Astrophys. 531, A59 (2011). https://doi.org/10.1051/0004-6361/201015549

    Article  ADS  Google Scholar 

  45. A. Tursunov, Z. Stuchlík, M. Kološ, Circular orbits and related quasiharmonic oscillatory motion of charged particles around weakly magnetized rotating black holes. Phys. Rev. D 93(8), 084012 (2016). https://doi.org/10.1103/PhysRevD.93.084012

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Visser, Traversable wormholes from surgically modified Schwarzschild spacetimes. Nucl. Phys. B 328(1), 203–212 (1989). https://doi.org/10.1016/0550-3213(89)90100-4

    Article  ADS  MathSciNet  Google Scholar 

  47. T.-Y. Zhou, Y. Xie, Precessing and periodic motions around a black-bounce/traversable wormhole. Eur. Phys. J. C 80(11), 1070 (2020). https://doi.org/10.1140/epjc/s10052-020-08661-w

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Vrba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuchlík, Z., Vrba, J. Epicyclic orbits in the field of Einstein–Dirac–Maxwell traversable wormholes applied to the quasiperiodic oscillations observed in microquasars and active galactic nuclei. Eur. Phys. J. Plus 136, 1127 (2021). https://doi.org/10.1140/epjp/s13360-021-02078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02078-4

Navigation