Skip to main content
Log in

Solitons and soliton interactions in repulsive spinor Bose–Einstein condensates with nonzero background

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We characterize the soliton solutions and their interactions for a system of coupled evolution equations of nonlinear Schrödinger (NLS) type that models the dynamics in one-dimensional repulsive Bose–Einstein condensates with spin one, taking advantage of the representation of such model as a special reduction of a \(2\times 2\) matrix NLS system. Specifically, we study in detail the case in which solutions tend to a nonzero background at space infinities. First we derive a compact representation for the multi-soliton solutions in the system using the Inverse Scattering Transform (IST). We introduce the notion of canonical form of a solution, corresponding to the case when the background as \(x\rightarrow \infty \) is proportional to the identity. We show that solutions for which the asymptotic behavior at infinity is not proportional to the identity, referred to as being in non-canonical form, can be reduced to canonical form by unitary transformations that preserve the symmetric nature of the solution (physically corresponding to complex rotations of the quantization axes). Then we give a complete characterization of the two families of one-soliton solutions arising in this problem, corresponding to ferromagnetic and to polar states of the system, and we discuss how the physical parameters of the solitons for each family are related to the spectral data in the IST. We also show that any ferromagnetic one-soliton solution in canonical form can be reduced to a single dark soliton of the scalar NLS equation, and any polar one-soliton solution in canonical form is unitarily equivalent to a pair of oppositely polarized displaced scalar dark solitons up to a rotation of the quantization axes. Finally, we discuss two-soliton interactions and we present a complete classification of the possible scenarios that can arise depending on whether either soliton is of ferromagnetic or polar type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  2. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford University Press, Oxford, 2016)

    Book  MATH  Google Scholar 

  3. P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings (SIAM, Philadelphia, 2015)

    Book  MATH  Google Scholar 

  4. Y. Kawaguchi, M. Ueda, Spinor Bose–Einstein condensates. Phys. Rep. 520, 253–381 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. D.M. Stamper-Kurn, M. Ueda, Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191 (2013)

    Article  ADS  Google Scholar 

  6. P.G. Kevrekidis, D.J. Frantzeskakis, Solitons in coupled nonlinear Schrödinger models: a survey of recent developments. Rev. Phys. 1, 140–153 (2016)

    Article  Google Scholar 

  7. S.V. Manakov, On the theory of two-dimensional stationary self-focusing electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)

    ADS  Google Scholar 

  8. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  9. L. He, S. Yi, Magnetic properties of a spin-3 chromium condensate. Phys. Rev. A 80, 033618 (2009)

    Article  ADS  Google Scholar 

  10. D.S. Hall, M.W. Ray, K. Tiurev, E. Ruokokoski, A.H. Gheorghe, M. Möttönen, Nat. Phys. 12, 478–483 (2016)

    Article  Google Scholar 

  11. L.S. Leslie, A. Hansen, K.C. Wright, B.M. Deutsch, N.P. Bigelow, Creation and detection of skyrmions in a Bose–Einstein condensate. Phys. Rev. Lett. 103, 250401 (2009)

    Article  ADS  Google Scholar 

  12. M.W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, D. Hall, Observation of Dirac monopoles in a synthetic magnetic field. Nature 505, 657–660 (2014)

    Article  ADS  Google Scholar 

  13. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, vol. 302 (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  14. G. Biondini, D.K. Kraus, B. Prinari, The three-component defocusing nonlinear Schrödinger equation with non-zero boundary conditions. Commun. Math. Phys. 348, 475–533 (2016)

    Article  ADS  MATH  Google Scholar 

  15. G. Biondini, D.K. Kraus, B. Prinari, F. Vitale, Polarization interactions in multicomponent repulsive Bose–Einstein condensates. J. Phys. A 48, 395202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Prinari, F. Vitale, G. Biondini, Dark–bright soliton solutions with nontrivial polarization interactions for the three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 56, 071505 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J.-ichi Ieda, T. Miyakawa, M. Wadati, Exact analysis of soliton dynamics in spinor Bose–Einstein condensates. Phys. Rev. Lett. 93, 194102 (2004)

  18. J.-ichi Ieda, T. Miyakawa, M. Wadati, Matter-wave solitons in an \(F = 1\) spinor Bose–Einstein condensate. J. Phys. Soc. Jpn. 73, 2996–3007 (2004)

  19. M. Uchiyama, J.-ichi Ieda, M. Wadati, Dark solitons in \(F = 1\) spinor Bose–Einstein condensate. J. Phys. Soc. Jpn. 75, 064002 (2006)

  20. J.-ichi Ieda, M. Uchiyama, M. Wadati, Inverse scattering method for square matrix nonlinear Schrödinger equation under nonvanishing boundary conditions. J. Math. Phys. 48, 013507 (2007)

  21. T. Kurosaki, M. Wadati, Matter-wave bright solitons with a finite background in spinor Bose–Einstein condensates. J. Phys. Soc. Jpn. 76, 084002 (2007)

    Article  ADS  Google Scholar 

  22. M. Uchiyama, J.-ichi Ieda, M. Wadati, Soliton dynamics of \(F = 1\) spinor Bose–Einstein condensate with nonvanishing boundaries. J. Low Temp. Phys. 148, 399–404 (2007)

  23. Z. Qin, G. Mu, Matter rogue waves in an \(F = 1\) spinor Bose–Einstein condensate. Phys. Rev. E 86, 036601 (2012)

    Article  ADS  Google Scholar 

  24. B. Prinari, F. Demontis, S. Li, T.P. Horikis, Inverse scattering transform and soliton solutions for a square matrix nonlinear Schrödinger equation with nonzero boundary conditions. Phys. D 368, 22–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Li, B. Prinari, G. Biondini, Solitons and rogue waves in spinor Bose–Einstein condensates. Phys. Rev. E 97, 0022221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Uchiyama, J. Ieda, M. Wadati, Multicomponent bright solitons in \(F = 2\) spinor Bose–Einstein condensates. J. Phys. Soc. Jpn. 76, 74005 (2007)

    Article  Google Scholar 

  27. V.S. Gerdjikov, N.A. Kostov, T.I. Valchev, Solutions of multi-component NLS models and spinor Bose–Einstein condensates. Phys. D 238, 1306–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. V.S. Gerdjikov, N.A. Kostov, T.I. Valchev, Bose–Einstein condensates with \(F = 1\) and \(F = 2\). Reductions and soliton interactions of multi-component NLS models, in Proceedings of SPIE 7501, 75010W, S.M. Saltiel, A.A. Dreischuh, I.P. Christov (eds) (2009)

  29. A.P. Fordy, P.P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras. Commun. Math. Phys. 89, 427–443 (1983)

    Article  ADS  MATH  Google Scholar 

  30. V.S. Gerdjikov, D.J. Kaup, N.A. Kostov, T.I. Valchev, Bose–Einstein condensates and multicomponent NLS models on symmetric spaces of BD.I-Type. Expansions over squared solutions, in Nonlinear Science and Complexity. J. Machado, A. Luo, R. Barbosa, M. Silva, L. Figueiredo Eds. (Springer, Dordrecht, 2011)

  31. V.S. Gerdjikov, G.G. Grahovski, Two soliton interactions of BD. I. Multicomponent NLS equations and their gauge equivalent. AIP Conf. Proc. 1301, 561–572 (2010)

  32. V.S. Gerdjikov, On soliton interactions of vector nonlinear Schrödinger equations, AMITANS-3. AMITANS Conf. AIP 1404, 57–67 (2011)

    ADS  Google Scholar 

  33. C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, S. Baumert, E. Richter, J. Kronjäger, K. Bongs, K. Sengstock, Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates. Nat. Phys. 4, 496–501 (2008)

    Article  Google Scholar 

  34. C. Hamner, J. Chang, P. Engels, M. Hoefer, Generation of dark–bright soliton trains in superfluid–superfluid counterflow. Phys. Rev. Lett. 106, 065302 (2011)

    Article  ADS  Google Scholar 

  35. D. Yan, J. Chang, C. Hamner, P.G. Kevrekidis, P. Engels, V. Achilleos, D.J. Frantzeskakis, R. Carretero-González, P. Schmelcher, Multiple dark–bright solitons in atomic Bose–Einstein condensates. Phys. Rev. A 84, 053630 (2011)

    Article  ADS  Google Scholar 

  36. D. Yan, J. Chang, C. Hamner, M. Hoefer, P.G. Kevrekidis, P. Engels, V. Achilleos, D.J. Frantzeskakis, J. Cuevas, Beating dark–dark solitons in Bose–Einstein condensates. J. Phys. B 45, 115301 (2012)

    Article  ADS  Google Scholar 

  37. H.E. Nistazakis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, R. Carretero-González, Bright–dark soliton complexes in spinor Bose–Einstein condensates. Phys. Rev. A 77, 033612 (2008)

    Article  ADS  Google Scholar 

  38. D. Yan, J.J. Chang, C. Hamner, P.G. Kevrekidis, P. Engels, V. Achilleos, D.J. Frantzeskakis, R. Carretero-González, P. Schmelcher, Multiple dark–bright solitons in atomic Bose–Einstein condensates. Phys. Rev. A 84, 053630 (2011)

    Article  ADS  Google Scholar 

  39. S. Middelkamp, J.J. Chang, C. Hamner, R. Carretero-González, P.G. Kevrekidis, V. Achilleos, D.J. Frantzeskakis, P. Schmelcher, P. Engels, Dynamics of dark–bright solitons in cigar-shaped Bose–Einstein condensates. Phys. Lett. A 375, 642–646 (2011)

    Article  ADS  Google Scholar 

  40. T.M. Bersano, V. Gokhroo, M.A. Khamehchi, J. D’Ambroise, D.J. Frantzeskakis, P. Engels, P.G. Kevrekidis, Three-component soliton states in spinor \(F = 1\) Bose–Einstein condensates. Phys. Rev. Lett. 120, 063202 (2018)

    Article  ADS  Google Scholar 

  41. B.J. Dabrowska-Wüster, E.A. Ostrovskaya, T.J. Alexander, Y.S. Kivshar, Multicomponent gap solitons in spinor Bose–Einstein condensates. Phys. Rev. A 75, 023617 (2007)

    Article  ADS  Google Scholar 

  42. S. Lannig, C. Schmied, M. Prüfer, P. Kunkel, R. Strohmaier, H. Strobel, T. Gasenzer, P.G. Kevrekidis, M. Oberthaler, Collisions of three-component vector solitons in Bose–Einstein condensates. Phys. Rev. Lett. 125, 170401 (2020)

    Article  ADS  Google Scholar 

  43. H.E. Nistazakis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, R. Carretero-González, A.R. Bishop, Polarized states and domain walls in spinor Bose–Einstein condensates. Phys. Rev. A 76, 063603 (2007)

    Article  ADS  Google Scholar 

  44. X. Chai, D. Lao, K. Fujimoto, R. Hamazaki, M. Ueda, C. Raman, Magnetic solitons in a spin-1 Bose–Einstein condensate. Phys. Rev. Lett. 125, 030402 (2020)

    Article  ADS  Google Scholar 

  45. X. Chai, D. Lao, K. Fujimoto, C. Raman, Magnetic soliton: from two to three components with SO(3) symmetry. Phys. Rev. Res. 3, L012003 (2021)

    Article  Google Scholar 

  46. A.K. Ortiz, B. Prinari, Inverse scattering transform and solitons for square matrix nonlinear Schrödinger equations with mixed sign reductions and nonzero boundary conditions. J. Nonlinear Math. Phys. 27, 130–161 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Szańkowski, M. Trippenbach, E. Infeld, G. Rowlands, Oscillating solitons in a three-component Bose–Einstein condensate. Phys. Rev. Lett. 105, 125302 (2010)

    Article  ADS  Google Scholar 

  48. P. Szańkowski, M. Trippenbach, E. Infeld, G. Rowlands, Class of compact entities in three-component Bose–Einstein condensates. Phys. Rev. A 83, 013626 (2011)

    Article  ADS  Google Scholar 

  49. P. Szańkowski, M. Trippenbach, E. Infeld, An extended representation of three-spin-component Bose–Einstein condensate solitons. Phys. D 241(2012), 1811 (2012)

    Article  MATH  Google Scholar 

  50. B. Prinari, A.K. Ortiz, C. van der Mee, M. Grabowski, Inverse scattering transform and solitons of square matrix nonlinear Schrödinger equations. Stud. Appl. Math. 141, 308–352 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Biondini, E. Fagerstrom, B. Prinari, The defocusing nonlinear Schrodinger equation with fully asymmetric non-zero boundary conditions. Phys. D 333, 117–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. G. Biondini, G. Kovacic, D. Kraus, The focusing Manakov system with non-zero boundary conditions. Nonlinearity 28, 3101–3151 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. M.J. Ablowitz, B. Prinari, G. Biondini, Inverse scattering transform for the vector nonlinear Schrödinger equation with non-vanishing boundary conditions. J. Math. Phys. 47 (063508), 1–33 (2006)

  54. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987)

    Book  MATH  Google Scholar 

  55. G.C. Katsimiga, S.I. Mistakidis, P. Schmelcher, P.G. Kevrekidis, Phase diagram, stability and magnetic properties of nonlinear excitations in spinor Bose–Einstein condensates. New J. Phys. 23, 013015 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  56. C.-M. Schmied, P.G. Kevrekidis, Dark–antidark spinor solitons in spin-1 Bose gases. Phys. Rev. A 102, 053323 (2020)

    Article  ADS  Google Scholar 

  57. S. Huh, K. Kim, K. Kwon, J.-Y. Choi, Observation of a strongly ferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Res. 2, 033471 (2020)

    Article  Google Scholar 

  58. X. Chai, L. You, C. Raman, Magnetic solitons in an immiscible two-component Bose–Einstein condensate. arXiv:2011.11462

Download references

Acknowledgements

This material is based upon work supported by the US National Science Foundation under Grants No. DMS-2106488 (BP), DMS-2009487 (GB), PHY-1602994 and DMS-1809074 (PGK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Prinari.

Appendix

Appendix

1.1 A.1 Unitary transformations, symmetric matrices and rotation of the quantization axes

Recall that the matrix NLS equation (3) is invariant under unitary transformations from the left or from the right. That is, if Q(xt) solves (3), so does

$$\begin{aligned} {\tilde{Q}}(x,t) = U Q(x,t) V\,, \end{aligned}$$
(A.1)

for all constant U and V such that \(U^\dag = U^{-1}\) and \(V^\dag = V^{-1}\). On the other hand, in order for \({\tilde{Q}}(x,t)\) to also represent a spinor wave function, the transformation (A.1) must preserve matrix symmetry. That is, one must have \({\tilde{Q}}^\mathrm{T}(x,t) = {\tilde{Q}}(x,t)\) whenever \(Q^\mathrm{T}(x,t) = Q(x,t)\). In this appendix we characterize the set of unitary transformations that preserve the symmetry constraint. We also show that all such transformations correspond to a rotation of the quantization axes.

We begin by representing arbitrary unitary matrices U and V without loss of generality in terms of the Pauli matrices as

$$\begin{aligned} U= & {} \exp [ iu_0 I_2 + i{\mathbf {u}}\cdot {\varvec{\sigma }}] = \mathrm{e}^{iu_0} \begin{pmatrix} \cos u + i{\hat{u}}_3\,\sin u &{} i({\hat{u}}_1 - i{\hat{u}}_2)\,\sin u \\ i({\hat{u}}_1 + i{\hat{u}}_2)\,\sin u &{} \cos u - i{\hat{u}}_3\sin u \end{pmatrix}, \end{aligned}$$
(A.2a)
$$\begin{aligned} V= & {} \exp [ iv_0 I_2 + i{\mathbf {v}}\cdot {\varvec{\sigma }}] = \mathrm{e}^{iv_0} \begin{pmatrix} \cos v + i{\hat{v}}_3\,\sin v &{} i({\hat{v}}_1 - i{\hat{v}}_2)\,\sin v \\ i({\hat{v}}_1 + i{\hat{v}}_2)\,\sin v &{} \cos v - i{\hat{v}}_3\sin v \end{pmatrix}, \end{aligned}$$
(A.2b)

where \({\varvec{\sigma }}= (\sigma _1,\sigma _2,\sigma _3)^\mathrm{T}\) is the vector of Pauli matrices, here chosen as

$$\begin{aligned} \sigma _1 = \begin{pmatrix} 0 &{} 1 \\ 1 &{} 0 \end{pmatrix},\quad \sigma _1 = \begin{pmatrix} 0 &{} -i \\ i &{} 0 \end{pmatrix},\quad \sigma _1 = \begin{pmatrix} 1 &{} 0 \\ 0 &{} -1 \end{pmatrix}, \end{aligned}$$
(A.3)

where \(u_0\), \(v_0\), \({\mathbf {u}} = (u_1,u_2,u_3)^\mathrm{T}\) and \({\mathbf {v}} = (v_1,v_2,v_3)^\mathrm{T}\) are all real, with \(\hat{{\mathbf {u}}} = {\mathbf {u}}/u\) and \(\hat{{\mathbf {v}}} = {\mathbf {v}}/v\), and where

$$\begin{aligned} u = \sqrt{{\mathbf {u}}\cdot {\mathbf {u}}} = \sqrt{u_1^2 + u_2^2 + u_3^2}\,,\quad v = \sqrt{{\mathbf {v}}\cdot {\mathbf {v}}} = \sqrt{v_1^2 + v_2^2 + v_3^2}\,. \end{aligned}$$
(A.4)

Since \(u_0\) and \(v_0\) just produce overall phase rotations, without loss of generality we can set \(u_0=v_0=0\) owing to the phase invariance of the MNLS equation. Without loss of generality, we can also take u and v in \([0,2\pi ]\).

Inserting (A.2) in (A.1) and requiring the equality of the off-diagonal entries of \({\tilde{Q}}(x,t)\) then yields the following three real constraints:

$$\begin{aligned}&{[} ({\hat{u}}_2{\hat{v}}_3 + {\hat{u}}_3{\hat{v}}_2)\sin u + {\hat{v}}_1 \cos u ]\,\sin v - {\hat{u}}_1\,\sin u \,\cos v = 0\,, \end{aligned}$$
(A.5a)
$$\begin{aligned}&{[} ({\hat{u}}_1{\hat{v}}_3 - {\hat{u}}_3{\hat{v}}_1)\sin u + {\hat{v}}_2 \cos u ]\,\sin v + {\hat{u}}_2\,\sin u\,\cos v = 0\,, \end{aligned}$$
(A.5b)
$$\begin{aligned}&{[} ({\hat{u}}_1{\hat{v}}_2 + {\hat{u}}_2{\hat{v}}_1)\sin u - {\hat{v}}_3 \cos u ]\,\sin v + {\hat{u}}_3\,\sin u\,\cos v = 0\,. \end{aligned}$$
(A.5c)

It is relatively straightforward to see that (A.5) are solved by

$$\begin{aligned} ({\hat{v}}_1,{\hat{v}}_2,{\hat{v}}_3)\,\tan v = ({\hat{u}}_1,-{\hat{u}}_2,{\hat{u}}_3)\,\tan u\,. \end{aligned}$$
(A.6)

In turn, (A.6) implies that (A.5) admit the following inequivalent classes of solutions, obtained respectively when \(v = u\) and \(v = 2\pi - u\):

$$\begin{aligned} S_+:~({\hat{v}}_1,{\hat{v}}_2,{\hat{v}}_3) = ({\hat{u}}_1, - {\hat{u}}_2, {\hat{u}}_3)\,,\quad S_-:~({\hat{v}}_1,{\hat{v}}_2,{\hat{v}}_3) = (- {\hat{u}}_1, {\hat{u}}_2, - {\hat{u}}_3)\,. \end{aligned}$$
(A.7)

One can now check that \(S_+\) implies \(V=U^\mathrm{T}\) while \(S_-\) implies \(V = -U^\mathrm{T}\). Since an overall minus sign can always be rescaled using the phase invariance of the MNLS equation, however, without loss of generality we can limit ourselves to considering only those transformations produced by \(S_+\).

Next we show that the unitary transformation (A.1) is equivalent to a complex rotation of the quantization axes. Let \({\mathbf {q}}(x,t) = (q_1, \sqrt{2}\,q_0 , q_{-1})^\mathrm{T}\) be the vector wave functions associated with Q(xt), and let \(\tilde{{\mathbf {q}}}(x,t) = ({\tilde{q}}_1, \sqrt{2}\,{\tilde{q}}_0 , {\tilde{q}}_{-1})^\mathrm{T}\) be the one associated with \({\tilde{Q}}(x,t)\). Observe that a sign change of Q(xt) obviously translates into a sign change in \({\mathbf {q}}(x,t)\) and recall that, in the quantum-mechanical context, an overall phase of the wave function is immaterial. Therefore, we can again limit ourselves to considering transformations produced by \(S_+\). It is straightforward to show that

$$\begin{aligned} \tilde{{\mathbf {q}}}(x,t)= & {} R\,{\mathbf {q}}(x,t)\,, \end{aligned}$$
(A.8a)

where

$$\begin{aligned} R= & {} \begin{pmatrix} c_+^2 &{} \sqrt{2}i({\hat{u}}_1-i{\hat{u}}_2)c_+\sin u &{} - ({\hat{u}}_1-i {\hat{u}}_2)^2\sin ^2u \\ \sqrt{2}i({\hat{u}}_1+i{\hat{u}}_2)c_+\sin u &{}\quad \cos ^2u-(1-2{\hat{u}}_3^2)\sin ^2u &{}\quad \sqrt{2}i({\hat{u}}_1-i{\hat{u}}_2)c_-\sin u \\ - ({\hat{u}}_1+i{\hat{u}}_2)^2\sin ^2u &{}\quad \sqrt{2}i({\hat{u}}_1+i {\hat{u}}_2)c_-\sin u &{}\quad c_-^2 \end{pmatrix},\nonumber \\ \end{aligned}$$
(A.8b)

and where for brevity we defined

$$\begin{aligned} c_\pm= & {} \cos u \pm i {\hat{u}}_3\sin u\,. \end{aligned}$$
(A.8c)

It is also straightforward to check that R is a unitary matrix, i.e., \(RR^\dag = R^\dag R = I_3\), and that \(\det R = 1\), implying \(R\in \mathrm {SU}(3)\). Finally, it is also important to realize that R corresponds to a rotation of the quantization axes. Consider again the transformation (A.1) with \(V = U^\mathrm{T}\), and again let \(u_0 = 0\) without loss of generality. It is straightforward to show that

$$\begin{aligned} \displaystyle R = \mathrm{e}^{2i{\mathbf {u}}\cdot {\mathbf {f}}}\,, \end{aligned}$$
(A.9)

where \({\mathbf {f}} = (f_1,f_2,f_3)^\mathrm{T}\), and \(f_1,f_2,f_3\) are representation of the angular momentum operators in \(\mathrm {SU}(3)\), namely:

$$\begin{aligned} f_1 = \frac{1}{\sqrt{2}}\begin{pmatrix}0&{}\quad 1&{}\quad 0\\ 1&{}\quad 0&{}\quad 1\\ 0&{}\quad 1&{}\quad 0 \end{pmatrix},\quad f_2 = \frac{i}{\sqrt{2}}\begin{pmatrix}0&{}\quad -1&{}\quad 0\\ 1&{}\quad 0&{}\quad -1\\ 0&{}\quad 1&{}\quad 0 \end{pmatrix},\quad f_3 = \begin{pmatrix}1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad -1 \end{pmatrix} \end{aligned}$$
(A.10)

In closing, we also point out that the above relations are purely local symmetries, and are therefore completely independent of the boundary conditions satisfied by Q(xt) as \(x\rightarrow \pm \infty \).

1.2 A.2 Asymptotics of two-soliton interactions

In this appendix we present a collection of figures to corroborate the asymptotics analysis of the two-soliton solutions discussed in Sect. 4. Figures 11, 12 and 13 display the difference between the exact two-soliton solution obtained from (51) with \(J=2\) and the asymptotic expressions, presented in Sect. 4, computed along the direction of soliton 1 as \(t\rightarrow -\infty \) (top row of each figure) and as \(t\rightarrow \infty \) (bottom row). Specifically, Fig. 11 shows the case of a polar–polar two-soliton interaction, Fig. 12 that of a ferromagnetic–ferromagnetic soliton interaction, and Fig. 13 that of a polar–ferromagnetic interaction. For completeness, Fig. 14 also shows the same polar–ferromagnetic interaction but where the asymptotic behavior being subtracted is along the direction of soliton 2, since in this case the two solitons are of different type. The fact that the soliton leg vanishes in the appropriate limit in each case serves as a clear visual demonstration of the fact that the asymptotic expressions do indeed capture the correct behavior of the soliton in both of these limits, including both the redistribution of mass among the three spin components as well as the position and phase shift.

Fig. 11
figure 11

Plot of the difference between a polar–polar two-soliton solution and its asymptotic expression along the direction of soliton 1, presented in Sect. 4.2. Top row: \(t\rightarrow -\infty \). Bottom row: \(t\rightarrow \infty \). The soliton parameters are the same as in Fig. 8

Fig. 12
figure 12

Same as Fig. 11, but for a ferromagnetic–ferromagnetic two-soliton solution, whose asymptotics was presented in Sect. 4.3. The soliton parameters are as in Fig. 9

Fig. 13
figure 13

Same as Fig. 11, but for a polar–ferromagnetic two-soliton solution, whose asymptotics was presented in Sect. 4.4. The soliton parameters are as in Fig. 10

Fig. 14
figure 14

Same as Fig. 13, except that the asymptotic is now calculated along the direction of the ferromagnetic soliton. The soliton parameters are as in Fig. 10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeya, A., Prinari, B., Biondini, G. et al. Solitons and soliton interactions in repulsive spinor Bose–Einstein condensates with nonzero background. Eur. Phys. J. Plus 136, 1126 (2021). https://doi.org/10.1140/epjp/s13360-021-02050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02050-2

Navigation