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Abstract This paper studies the relativistic angular momentum for the generalized elec-
tromagnetic field, described by r-vectors in (k, n) space-time dimensions, with exterior-
algebraic methods. First, the angular-momentum tensor is derived from the invariance of
the Lagrangian to space-time rotations (Lorentz transformations), avoiding the explicit need
of the canonical tensor in Noether’s theorem. The derivation proves the conservation law
of angular momentum for generic values of r, k, and n. Second, an integral expression for
the flux of the tensor across a (k + n — 1)-dimensional surface of constant £-th space-time
coordinate is provided in terms of the normal modes of the field; this analysis is a natural
generalization of the standard analysis of electromagnetism, i.e. a three-dimensional space
integral at constant time. Third, a brief discussion on the orbital angular momentum and the
spin of the generalized electromagnetic field, including their expression in complex-valued
circular polarizations, is provided for generic values of r, k, and n.

1 Introduction: preliminaries, notation, and main results
1.1 Generalized Maxwell equations

For a given natural number r, the generalized Maxwell field F(x) and source density J(x)
are characterized by multivector fields of respective grades r and r — 1 at every point x
of a flat (k, n)-space-time with k temporal and n spatial dimensions [1, Sect. 3]. For any
0 < s < k + n, grade-s multivectors belong to a vector space with basis elements e;, where
1 is an ordered list of s non-repeated space-time indices; we represent space-time indices by
Latin letters. We denote by Z; the set of all such ordered lists of s space-time indices; we let
Ip = ¥ and we write Z for Z1. Let Aj; = ey - e; for I € Z; be the space-time metric, where
- denotes the dot product [1, Egs. (12)—(13)]. The temporal (resp. spatial) basis elements are
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ep to ex_1 (resp. e; to ex4+,—1) and have metric —1 (resp. +1). The generalized Maxwell
equations for arbitrary r, k, and n are the following pair of coupled differential equations:

dLF =], ey
INF=0, (@)

in units such that ¢ = 1. The interior derivative (or divergence), expressed with the left
interior product (1) in (1), and the exterior derivative, expressed in terms of the wedge
product (A) in (2), are both defined in [1, Sect. 2] or [2, Sect. 2] and the operator 9 is given
by d =) ;.7 4;i0;.Forr =2,k =1,and n = 3, Egs. (1)~(2) coincide with the standard
Maxwell equations, with the identification of F as the (antisymmetric) Faraday tensor of the
electromagnetic field, in contravariant form and 9 the four-gradient [3, Ch. 4], [4, Ch. 11].

The Maxwell equations can be derived by an application of the principle of stationary
action [5, Ch. 19], [3, Sect. 8]. For a field theory, the action is a quantity given by the integral
over a (k + n)-dimensional space-time of a scalar Lagrangian density £(x). For generalized
electromagnetism, the basic field in this formulation is taken to be the vector potential A (x),
a multivector field of grade r — 1, such that

F=0AA. 3)

The Lagrangian density £ is expressed in terms of the multivector dot (scalar) product [1,

r—1
Sect. 2] as the sum of two terms: a free-field density, Lem = %F - F, and an interaction
term, Line = J - A, that is

_1y—1
,_ D

F-F+A-J. &)

The Euler-Lagrange equations for the Lagrangian density £ in (4) give indeed the Maxwell
equation (1) as vector derivatives of £ with respect to the potential A and its exterior derivative
d _1 A, namely [6, Sect. 3.2]

AL = (=119 (99raL). Q)

If we replace the potential A by a new field A’ = A + A + 3 A G, where A is a constant
(r — 1)-vector and G is an (r — 2)-vector gauge field, the homogenous Maxwell equation (2)
is unchanged [1, Sect. 3]. For a given Maxwell field, there is therefore some unavoidable
(gauge) ambiguity on the value of the vector potential if » > 2. Of special interest for
this work are the Coulomb-¢ gauge and the Lorenz gauge. For a space-time index ¢, let us
define the differential operator 3; = ) ;.7 A;;9;. In the Coulomb-¢-gauge, the following
two conditions are imposed:

ey _l A= 0, (6)

9; 1A =0. @)
In classical electromagnetism, setting £ = 0 recovers the Coulomb or radiation gauge. In the
Coulomb-/£ gauge, it also holds that d _1 A = 0. In the less restrictive Lorenz gauge, it simply
holds that

d_1A=0. 8)

k+n

r72) components, i.e. a scalar equation for r = 2.

The multivectorial equation in (8) has (
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1.2 Energy—momentum tensor and Lorentz force

Energy—momentum can be transferred from the field to the source through a process modelled
as a force acting on the source. The generalized Lorentz force density f is a grade-1 vector
with k 4+ n components given by [1, Sect. 4]

f=JaOF=@@_aF)F. ©)]

The volume integral of the Lorentz force density f over a (k 4 n)-dimensional hypervolume
VK41 quantifies the transfer of energy—momentum to the source in that volume. The conser-
vation law relating the Lorentz force (9) and the stress—energy—momentum tensor Tep, of the
free Maxwell field F is given by [1, Sect. 4], [7, Sect. 4.3],

f+0_1Tem =0, (10)

where Tep, is a symmetric rank-2 tensor for all values of r, k, and n. In analogy to the
(antisymmetric) multivector basis elements e;, we denote the rank-s symmetric-tensor basis
elements by uy, where I € J; is an ordered list of s, possibly repeated, space-time indices and
Js denotes the set of all such lists. The interior derivative (divergence) d _I Tep, is computed
according to the interior product [7, Eq. (25)], and indeed satisfies (10), cf. [7, Eq. (40)].
The tensor Tepy, is expressed in terms of the © and @® tensor products [7, Sect. 2.4]. Given
two multivectors a and b of the same grade s, the a © b and a ® b are two rank-2 tensors [7,
Sect. 2.4] with basis elements w;; = ¢; ® €; and respective (i, j)-th components given by

a@b]ij = (Ajje; ta) - (b Ajje)), (11)
a®b|ij = (Aijei na) - (b A Ajje)), (12)
where A;; and Aj; are the space-time metric defined previously. In general, neithera © b
nor a ® b are symmetric; however, the sum a © b + a ® b is symmetric in its components

[7, Sect. 2.4]. For all values of r, k, and n, the tensor Tep, is expressed in terms of the © and
® tensor products [1, Sect. 4.2], [7, Sect. 4.3], as

1
TemZ—E(FGF—I—F@F). 13)

The diagonal, T5™, and off-diagonal, Tlim with i < j, components of Tey, are explicitly
given by [7, Eqs (38)-(39)]

(_1))‘—1
TEm = i > AFl— ) ALF?). (14)
LeZii¢L LeZ,ieL
T =— Y Aro(L.)o(j. L) Fe.p) Fegjn)- (15)
LeT, _yi,j¢L

where for two disjoint lists I and J of non-repeated space-time indices, o (/, J) is the signature
of the permutation that sorts the concatenated list (1, J), and (/, J) is the sorted concatenated
list (1, J). If the lists I and J are not disjoint, we adopt the convention that o (1, J) = 0.

For later use, let us define the product N between basis elements e; and uy, I = (i1, i2) €
J» as

e Nu; = Y o, i5)Wir oiz). (16)
I7el!
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Here, 1! denotes the set of all permutations (not necessarily ordered) of /, and I = (if , i})
denotes one such permuted list. The condition ;5 # i is implicitly enforced by the permutation
signature o (i, i3 ).

Both the conservation law (10) and the formula for the symmetric tensor Tep (13) can
be derived by exterior-algebraic methods from the invariance of the free-field action with
density L.y to infinitesimal space-time translations [7]. This exterior-algebraic derivation
directly gives a symmetric tensor, without recurring to the Belinfante—Rosenfeld procedure
to symmetrize the canonical tensor that appears in a standard application of Noether’s theorem
to the invariance of the action [8,9], [10, Sect. 3.2], [11, Sect. 2.5]. In Sect. 2 of this paper,
we show how a formula for the relativistic angular-momentum tensor can be derived by
exterior-algebraic methods from the invariance of the action for the free field with density
Lem to infinitesimal space-time rotations.

Generalizing the usual electromagnetic analysis of flux as a three-dimensional space inte-
gral at constant time, the energy—momentum flux IT¢ across the (k + n)-dimensional half
space-time Vé"L" of fixed £-th space-time coordinate x¢, for £ € {0, ...,k +n — 1}, can be
expressed in terms of the transverse normal modes of the field [1, Eq. (86)] as a multidimen-
sional integral over Z ¢, the set of values of & ; for which A¢,&;-&; < 0, where §; = & —&ey,
namely

I =47 (=1) o (¢, £) / §e+|A<§H)|2 (17

where d&c is an infinitesimal element [2, Sect. 3.1] along all coordinates except the £-th, the
frequency x¢ is given by x¢ = +/—Aw§; - &7, and §; | = &; + xeer; the complex-valued
normal field components are denoted by A(§ 74)-In Sect. 3 of this paper, we provide an
analogous formula for the angular-momentum flux and its split into center-of-motion, orbital
angular momentum, and spin components, as described in the next section.

1.3 Relativistic angular momentum: background and summary of main results

In classical mechanics, the angular momentum L is an axial vector (or pseudovector) with
three spatial components. The relativistic angular momentum $2 is an antisymmetric tensor
of rank 2, or a bivector, that combines the angular momentum L and the polar vector N for
the velocity of the center-of-mass (also known as moment of energy). In fact, the way £ is
constructed is the same as the way the electromagnetic field bivector F is constructed from
the axial magnetic field and the polar electric field, that is £ = ey AN + L™ [1, Sect. 3.1],
where L is the spatial Hodge dual of L [1, Eq. (18)], i.e. the bivector corresponding to the
axial vector. In (k, n)-space-time, relativistic angular momentum $2 is a grade-2 multivector
with (H”) components.

In analogy to energy—momentum, a conservation law relates the transfer of angular
momentum over a (k + n)-dimensional hypervolume V¥*” to the divergence of an angular-
momentum tensor M, with rotation center e. In contrast to Tey,, the basis elements of Mg
are of the form w; ; = e¢; ® e;, where i € 7 and I € 7. For classical electromagnetism,
withr = 2,k = 1, and n = 3, this tensor is given in contravariant form as [4, Sect. 12.10.B]

Mgﬁy = TP (Y —a?) — T (xP — oP), (18)

where T are the components of the symmetric stress—energy—momentum tensor. In our
notation, 7% = T:(m p)- The vectors L and N are given by volume integrals of some appro-
priate functions of M. For instance, for & = 0, the spatial angular momentum vector L of
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the electromagnetic field is given [4, Prob. 7.27] in terms of the standard cross-product of
the spatial position vector x and electric and magnetic fields E and B by:

L= / dxio3 (x x (E x B)). (19)
R3

Since the spatial relativistic angular momentum bivector is the space-Hodge-dual L, using
[1, Eqg. (36)] we have

LM = /3 dx123 (x A (E x B)). (20)
R’

Moreover, the j-th component of the Poynting vector E x B coincides with Tl‘;m in (15), with
i=0,

M= Y o(.m)FeomFe(im @1
meZ:m#0, j
= (ExB),, (22)

where we have used that r = 2 to rewrite L as m € Z, that A,,,,, = 1 for the spatial indices,
and that o (m, 0) = —1 for any spatial m, as well as the definition of the cross-product E x B.
The (i, j)-th component of L* in (19) is thus given by the volume integral of the quantity

xl-T(er.no(i, D+xiTe"o(j, i), (23)

which in turn can be identified with the component in wg ;; of the product x Nl Te;, defined
in (16). In Sect. 2, we prove that this is no coincidence, and that in general it holds that

My = (x — o) A Tep,. (24)

The proof is built on the principle of invariance of the action to infinitesimal space-time
rotations around .

In Sect. 3, we provide a formula for the relativistic angular momentum .Qf; of the general-
ized electromagnetic field, including L and the center-of-mass velocity N, for any values of
k, n, and r, as the flux of the tensor My, across a (k +n — 1)-dimensional surface of constant
£-th space-time coordinate (Eqs (58) and (63)), for any ¢,

2! = / I M, (25)
3vk+n
=0, £ Z o(i, j)es(i,j)/ dxge (x; — i) Teqe, jy, (26)
i,jEZ Rk+n—1

where the flux integral is carried out with respect to the inverse Hodge of the infinitesimal
element dx™"' [2, Eq. (19]. The total angular momentum .th can be decomposed as .th =
N+ LO+ St —a AT, i. €. the center-of-mass component N¢, the orbital angular momentum
L¢, and the spin S¢. In terms of the transverse normal modes of the field, evaluated in the
Coulomb-¢ gauge, these three terms are, respectively, expressed (cf. Eqs (74)-(76)), as

NC = x, AT + jm(—=1) o (L, £°)

dé&e A A
/:5: ﬁ Xe€e A ((352 ®A (EZ,+)) x A(§g,+) B CC)’ @7
d&e

14
L’ = jn(~1)o(e £ EE(EA((3£Z®A*(EE,+))XA(EZ,Q—CC), (28)

Ey
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St = —j2nol(, 66)/ A*(sg D OAE) —cc) (29)

where cc stands for the complex conjugate. Expressions for the bivector components of L and
St are given in (77) and (80). Of special interest are the circular-polarization-basis formulas
for the orbital angular momentum and the spin, respectively given in (87) and (85). For the
standard electromagnetic field, the spatial components of the orbital angular momentum and
spin in (28)—(29), computed for £ = 0, r = 2, k = 1, and n = 3, coincide with the well-
known values [12, Eq. (16) in Bj.2], respectively given in vector notation, rather than as a
bivector, by

. de A -
L—jr [ 52 mgse « (00, An; DA —cc).  GO)
. déins [, A
S=—jon /w 2;3 (A ;) x Az ) —cc). 31)

By construction, the components of the angular momentum and spin bivectors that include
the index £ are zero.

The feasibility of the separation of angular momentum into orbital and spin parts in
a gauge-invariant manner, as well as its possible operational meaning, have been subject
to some discussion, particularly in a quantum context [13—15]. Since the consideration of
quantum aspects is beyond the scope of this work, and it seems unlikely that statements about
the generalized electromagnetic field can be supported by experimental observations to settle
the issue, we do not dwell on this matter in this paper, apart from noting that we carry out
our analysis in the Coulomb-¢ gauge (or equivalently for the transverse normal modes of the
field [12, Sect. By]), the condition that has been found to be in best empirical agreement with
observations for the standard electromagnetic field [15].

2 Angular-momentum conservation law for the free generalized electromagnetic field

In this section, we exploit the invariance of the action with Lagrangian density Lep, to infinites-
imal space-time rotations, e. g. Lorentz transformations, to derive a conservation law and an
expression for the relativistic angular-momentum tensor by direct exterior-algebraic methods,
avoiding the non-symmetric canonical tensor and the related currents in Noether’s theorem.
For the sake of notational compactness, we remove the subscript em in the tensor.

2.1 Conservation law for angular momentum

Let us shift the origin of coordinates by an infinitesimal perturbation . For a translation,
each of the k + n components is an independent function of space-time &;. For a space-time
rotation (Lorentz transformation) around a center point ¢, and given an infinitesimal bivector
&, with (k+") components, it holds that

e=¢&L X—a). (32)

Let {€’} denote the rotated (perturbed) basis elements, expressed in the original basis {e}.
Along the i-th coordinate, the basis element e; is perturbed to first order by an infinitesimal
amount

ee=¢ x(1+0®e), (33)
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where 1 = )", 7 A;;w;; is the identity matrix and the Jacobian partial-derivative matrix
d ® & is given by

IRe = Z A;ji0i€jWij. (34)
i,jeT
The j-th column of the Jacobian matrix contains the exterior derivative, i.e. gradient, of
the j-th component of the perturbation in the coordinates, €;. As proved in [7, Sect. 3.3],
a similar general expression holds for the transformation of multivector basis elements of
grade s,

¢ =e; x (I, + G}, (35)

where 1, = ) e, Ajywy  is the grade-s identity matrix and the matrix G} is given by [7,
Eq. (70)]

Gi=(D""Y 3" Y ApoU\Ni, oG, I\i)die; Wiy (36)

I€Z iel jeI\{I\i}

Writing the action functional over a closed region R in the new perturbed coordinates
involves changing the integrand and the differentials according to (33) and (35). For the
Lagrangian density Lem, given by a scalar product of two multivectors, the full details are
given in [7, Sects. 3.4-3.5]. Let us assume that the fields vanish at infinity sufficiently fast,
e.g. the integral of ¢ 1 T = (¢; L (x — «)) 1 T at infinity (the boundary of the vol-
ume in the action) vanishes. Then, the change of action §S,,, is expressed in terms of the
rank—2-manifestly symmetric tensor T, the stress—energy—momentum tensor (13) of the free
generalized electromagnetic field, as

8SLem / dx @ ®e) T (37)
R

__ / dX 3 T e, (38)
R

having assumed that the integration region R is large enough to make the physical system
closed, and that the fields decay fast enough over R so that the flux of the fields over the
boundary of R is negligible. This formula for the change of action (38) holds for arbitrary
grades of the generalized electromagnetic field F.

The integrand in (38) can be rewritten using (32) and [1, Eq. (27)] as

@M (erLx—@)=(x—a)A@T)-é&. (39)

Assuming that infinitesimal space-time rotations are a symmetry of the system and that the
fields decay sufficiently fast, the fact that the variation of the action 6S,,, must be zero for
all infinitesimal perturbations &, implies that

Xx—a)A@aT)=0. (40)

This expression characterizes the conservation law related to angular momentum, in the
absence of external currents. Differently from the condition @ 1 T = 0 that appears in
the context of invariance to translations and gives a the conservation law for the energy—
momentum, invariance to infinitesimal rotations requires the interior derivative (divergence)
of the stress—energy tensor to be radial, or equivalently parallel to the relative-position vector
X —o.

In the following section, we provide an expression for a rank-3 angular-momentum tensor,
valid for any number of space-time dimensions and grade of the electromagnetic field.
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2.2 Relativistic angular-momentum tensor

In this section, we prove that (40) can be expressed as the matrix derivative (divergence) of
a rank-3 tensor, which we will identify with the relativistic angular-momentum tensor of the
generalized electromagnetic field.

To start, we expand the bivector equation (40) in components as

> (i — e A ( >0 Te(j,z)ez) (41)

Xx—a)A@aT

ieZ Jj el
= Z o (i, 0)(x; — ;)0 Te(j,0)€c(i,0)- (42)
i jleT

Consider now a bivector of a similar form, where (x; — ;) and Tg(;,¢) are swapped, i.e. (x; —
@;)0; T (j,¢) is replaced by Tg(j,¢)0; (x; — ;). Since 0 (x; — a;) = §j;, this bivector can be
evaluated as the zero bivector,

Z o (i, O)T(j,000j (xi — aj)€s(ie) = Z o (i, O)Ts(j,0)8ji€si,0) (43)
i,jtel i,jtel
=Y 0. OTe.0ecn (44)
ileT
= > (0G.O+0W.D)Tgoeer).  (45)
i0eTii<t

where we have used that o (i, i) = 0 to keep only the terms with i 7# £ and then split the
summation into the disjoint cases i < £ and ¢ < i and interchanged the roles of i and ¢ in
the latter case. Since o (i, {) = —o (¢, i), we verify that Eq. (45) is zero. Adding this zero
bivector to (42) and applying the Leibniz rule for the derivative gives

x—a)A(@aT Z o (i, O)((xi — )3 Te(jo) + Te(j,0)0j (xi — ati))esiiey  (46)

i,jteT

= Z 0 (i, 00;((xi — o) Te(j,0))€c(i,0)- 47
i jleT

It remains to prove that (47) is the divergence of a suitably defined tensor field. Let
M, = (x — a) AT be the angular-momentum tensor field, where the product [N is defined
in (16). The tensor field My, is antisymmetric in the second and third components, as its basis
elements are given by w; ; = e; ® e;. Expanding the product (x — &) AT with the definition
in (16), the tensor field M, is given by

My =) Y (xi—a)Tre; Nuy (48)

ieZ IeJy

=Y > (xi— aim( > ol.if )wig,g<i,ig)) (49)
ieZ IeJ, 17€l!

=Y (i —a)Tj00, W) e
i,jeT
+ Y i — )T OWjeio) + 0 HWeei. jy)- (50)

i,jlel:j<t
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where we have split the summation over lists I € 7 into two, the first one for the lists /
of the form (j, j) and the second one for the lists of the form (j, £), with j < £. Splitting
further the second summation into two, and renaming j and ¢ as £ and j, respectively, we
obtain

M, = Z (xi —a)Tjjo(, JIWjei,j) + Z (i —a)Tjeo (i, OOW; ¢ 0)

ijeT i jeeT:j<t
+ Y i —a)Tyo (i OW) e (51)
i jeeT:j>t
= Z (xi —a)Tjjo(i, j)Wjei, ) + Z (xi —a)Tej, 000 (@, OWj ey (52)
ijeT i jLeT:j#e
= Z (xi —ai)Tej 0o (A, OWj e 0), (53)
i,jteT

where we have combined in (52) the separate summations over j < £ and j > ¢ into one
single summation over j 7 ¢, and then in (53) combined this result with the first summand,
expressed as a double summation over j and £ such that j = £, into a triple summation over
indices i, j, and £.

Computing the matrix derivative [7, Eq. (34)] of M, denoted by 9 x M, we recover
(47), that is

0 xMy = Z 0 ((x; —ai)Te(j,0)o (i, eg o (54)
i,jteT
=x—a)A@aT. (55)

Substituting this expression in (39) and the result back in (38), we find that the change of
action is given by

5S¢, = / % (3 x My) - . (56)
R

The invariance of the action to rotations, 6Sr,, = 0, implies (40) and equivalently that
d X My = 0. In the presence of sources, the divergence 3 x M, can be seen as an angular-
momentum density, and the volume integral of 3 x M, across an (k + n)-dimensional
hypervolume V¥+" gives the transfer of relativistic angular momentum from the field to the
sources in the volume. In the next section, we characterize this transfer of angular momentum
in terms of the flux of My, and provide an expression for the flux in terms of the normal
modes of the field.

3 Flux of the angular-momentum tensor: spin and orbital angular momentum of the
generalized electromagnetic field

3.1 Integral form of the conservation law and angular-momentum flux

The angular-momentum conservation law admits an integral form, which we derive next.

First, the volume integral of the divergence d x M, over an (k 4 n)-dimensional hypervolume
Ykt gives the transfer of angular momentum from the field to the sources. This volume
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integral is the flux of the divergence over V¥*” [1, Eq. (40)],

/VH dxo,... kan—1(d x M) = /w dFxm (@ x My), (57)

where the flux integral is carried out with respect to the inverse Hodge of the infinitesimal
element dk+nx™™! [2, Eq. (19]. A short adaptation of the analysis in [2, Sect. 3.5], included
in Appendix A, proves a Stokes theorem for the angular-momentum tensor: the flux of M,
across the boundary 0V™ of an m-dimensional hypersurface V™ is equal to the flux of the
divergence of M, across V" for any m < k + n. For m = k + n, this Stokes theorem thus
gives

/ dx™T (9 x My) :/ a1y oM, (58)
vk+n avk+n

As an example, and for some fixed x; and ¢ € Z, consider the (k + n)-dimensional half
space-time region

VEF = (—00, 00) X (—00,00) - -+ X (—00, x¢) X - - (—00, 00). (59)

The boundary of this region is a surface of constant space-time coordinate £ of value xy,
given by

8Vé(+n — (—OO, OO) X (—OO, OO) e X {X@} X e (—OO, OO) (60)

Let Sch denote the flux of the tensor field My = (x — a) A T across the boundary 8V§+".
In this case, the Hodge-dual infinitesimal vector element in the r.h.s. of (58) is given by [1,
Eq. (83)]

d I dypeor (€, €9) Agrey, ©61)

where the factor o (¢, £€) arises from the orientation such that the normal vector e; points
outside the integration region. Using (53) in (58) and using (61), carrying out the matrix
product, and rearranging the expression, yields

ﬂfz = / dxgco (€, KC)Aae( X ( Z (x; — Oli)Ts(m,j)O'(i, j)w,n,g(i,j)) (62)
Rk+n—1

i,m,jeT
=0t t) ) ol j)es(i,j)f

dxee (x; — i) Tee, j)- (63)
- Rk+n—1
i,jel

An alternative, slightly more explicit, expression for (63) is the following

QL =0, Z /1;k+ . dxge (e (xi —ai)Teqe,j) +€ji(xj —ap)Toiy).  (64)
(i,))eTr

3.2 Normal modes of the field
Substituting in (62) the stress—energy—momentum tensor T by its expression in (13), the flux
Slfl of the angular-momentum tensor a surface of constant space-time coordinate £ of value

X¢ is given by the integral

1
e, = —54uo (. zC)/k+ | dxpeer x (x—a)BEFOF+FoF). (65
Rf+n=
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The r.h.s. of (65) is computed w.r.t. x¢c, being £¢ the set of indices excluding £. We let
X; = X — x¢eg and similarly £; = & — &e, for the frequency vector defined below. We also
let kg = — 1 Age (€, £°).

In the absence of charges, the free field F satisfies the homogeneous wave equation and
can be expressed as a linear superposition of complex exponentials e/274 X such that £ -£ = 0.
Note that here j = /—T; the context will make it clear whether Jj refers to a coordinate label
or to the imaginary number. Denoting the coefficient of each complex exponential by F, the
Fourier transform of F, and with the definition d¥*" = d&o - - - d&gyn—1, we have

F(x) = f dES(E - E) PTENE(E), 66)
Rk+n

We resolve the Dirac delta by rewriting the condition § - § = 0 in terms of &; as Ag@%‘ez +
&; - &; = 0. This equation has real solutions for & only if A¢c&; - §; < 0, namely the two
possible values & = +x,, where x, is given by

xe =+ —Auk;-&; (67)

Let E be the set of values of &; for which Ag&; - §; < 0. We define the pair of frequency
vectors §; - as

§i o, =87+ oxee. (68)

for o € § = {+1, —1}, respectively, shortened to 4+ and —. Using [16, p. 184], we can
write the inverse Fourier transform (66) w.r.t. the integration variables &,c, now with the
appropriate constraints on the integration range so that y, exists, in various equivalent forms
as

d&ge ( 27E; X )
F(x) = —_— TS io X F (&7 69
®) /: (X &7, (69)
=/ @6127@@-*2?{(55)’ (70)
=, 2xe

. Al
where we have factored out a common factor ¢/27€2%¢ and defined the function F (§7) as
~{ , N . ~
F(§p) = /2T R (g ) + e PTA R (g ). (71)

¢
We may rewrite the flux .Qfx in terms of F by substituting (70) in (65) as

d c d /c i - 1yx-
ﬂfl =Ky / dec // 5[ ‘i:l/ 61271(5[0—8[—) Xleg
Rk+n-1 EoxE, 2Xe 2Xp
Al ~ 0 ~ 0 Al
x (k-0 m (€ oF ¢ +F ) oF €))). (72)
3.3 Spin and angular momentum of the generalized electromagnetic field

In Appendix B.1, we carry out the rather tedious evaluation of this integral in terms of the
transverse normal modes in the Coulomb-¢ gauge. Under the assumption that the various
field components commute, we obtain the following formula for the angular momentum as
a sum of four components, cf. Eq. (151),

2L =N"+L +S" —anm’, (73)
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namely the center-of-mass velocity N, the orbital angular momentum L¢, and the spin S¢,
respectively, given by

N = xe Al + j(—=1) o (¢, £°)

d&ge . .
fs[ ﬁ xeee A ((3% ®@A*(E; ) x A ) — CC), (74)
d " N
= jr (=1 ot ) / S g (05 ®A" € 0) x Ak ) — ). 9
d
S¢ = — jamo(e, ) / 5‘ (A 0 A ) —cc). (76)

where IT* is the energy—momentum flux across the region in (17) and contributes to the
angular momentum with a term dependent of the origin of coordinates e. The product ® could
be replaced by ® in (76) with an overall change of sign, since the off-diagonal transposed
components of both products coincide [1, Eq. (22)], and the diagonal components vanish in
the Coulomb-¢ gauge defined in (6)—(7).

Using the various product definitions, the /-th component, where I = (i, j) € Z, and
£ ¢ I, of the orbital angular momentum and spin are, respectively, given by

LY = jr(=1)a(L, )

=

d
si ( ]ng(aé/A*(SZJr)) A('E[ +)

=L
— 25 (0: A%8.0) - A ) — ce) (77)
=jr (=)o, £

dége A R
/ d > (AKK<A//'&(3£J- kg )AkEg )

Ee 2X€ KeZ,

— 2ii&j (% A}(52,+))AAK(§Z,+)> - CC), (78)
and
St = —j2ma(t, £°)

dé&pe ~ o
/ st ( Z Appo(L, o (j, L)A:(i,L)(§g,+)As(j,L)(§z,+)—CC>~

=, 2
¢ XNy e T gL

(79

By construction, the subspace of vector potential components in (79) is restricted to those
lists disjoint from 7, with components different from £ (from the Coulomb-¢ gauge condition
in (6)), and orthogonal to & i+ (from (7)). This leaves a total of k + n — 4 space-time indices,
to be distributed in lists of r — 2 different elements. The dimension of this subspace is thus
(kjf;‘). This dimension might be related to the classification of distinct pairs of spin-1
particles linked to the direction &7 , , a possibility to be studied elsewhere.

The feasibility of the separation of angular momentum into orbital and spin parts in a
gauge-invariant manner, as well as its operational meaning, have long been subject to some
level of discussion, particularly in a quantum context [13—15,17-19]. As stated earlier in the
paper, quantum aspects lie beyond the scope of this work and we do not dwell further on this
matter, apart from noting that our analysis is done in the Coulomb-£ gauge (or equivalently
for the transverse normal modes of the field [12, Sect. By]), the condition that has been found
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to be in best empirical agreement with observations for the standard electromagnetic field
[15].

As a complement, we include in Appendix C a “canonical” derivation of the spin compo-
nents extended to the generalized multivectorial electromagnetic field. Ignoring the quantum
aspects, we have used as a basis Sects. 12 and 16 of Wentzel’s treatise on quantum field theory
[20], one of the first book treatments of the subject. Our analysis bypasses the canonical ten-
sor that Wentzel makes use of, so the appropriate adaptations have been made. As expected,
the final formulas obtained with this extended analysis coincide with (76) and (79).

3.4 Spin and orbital angular momentum in a complex-valued circular polarization basis

From the definition of the ® product in (11), the /-th component Sf of the spin bivector S
in (76) is given by

. : d&ee A

S;=—j2na (€. £) [ e ((A”ez JAE D) (A Leay) - CC), (80)
=y

where I = (i, j). The component Sf adopts a particularly transparent form in the complex-

valued circular-polarization basis. For any ¢, let the right- and left-handed basis elements,

respectively, denoted by e and e’, be given by

el =cosp Ajie; — jsing Ajje;, (81a)
el = —sing Ajie; — jcosp Ajje;. (81b)
Note that the symbol j is used to represent both the imaginary unit and one of the
components of I, a possible source of confusion in expressions as (81) and others
below. These vectors satlsfy the orthonormahty relations e, + el = cos? pA;i +sin® pA jjs
e *.el =sin? (pA” + cos? <pA jj and e/ " -e =singcosp(A;; — A;;), as well as the
relationships e+ A e+ =el nel =0 and ]e+ A el = Ajse;. The transformation in (81)
has determinant A;; A j; and the inverse transformation is given by

Ajiej = cospel, —singe’, (82a)

Ajiej = j(sinpe! +cospel). (82b)

The basis elements for ¢ = % appears in the analysis of helicity and circular polarization

[4, Problem 7.27]; for ¢ = 0, and apart from a factor —j, we recover the standard basis,
i.e. linear polarization.

When we substitute these expressions for €; and e; in (80) we have to take into account

that the complex-conjugate operation acting on the potential also affects the basis elements.

For the standard space-time basis, this observation is irrelevant since the basis elements are

real-valued. However, the polarization vectors are complex-valued and we need to use e
rather than e; in (82a). With this observation, the component Sf is given by

st = 2o, [ 5 (i(cospel —singel ) A )
=, 2X¢
. (A(‘;‘g L)L (sing eﬂr +cospel)) — cc) (83)

= —j2no(l, zC)/ ]sm(2(p)( _|A*(§£ D) (A(gm)l_e;)
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— (e A% L) (AL el )+
+ jcos2) (eL* A% ) - (A Lel) +cc), (84)

where we have grouped common terms under the assumption that the fields A* (§7,) and

A(E 7.4+) commute, as it corresponds to a classical theory. For the ch01ce (p = m/4, the
basis elements satisfy e+ e+ =el ".el = 2(A” + Ajj) ande -el = Z(AH Aii),
and the components Se adopt a pamcularly simple form,

d . s .
St =2mo (e, £° )f Ee e’+ JAE D) (A pLel)

— (e ¥ A*@m) (AGzouel)). (85)

This formula extends a similar result for the standard electromagnetic field [4, Problem 7.27],
and expresses the spin as the sum of independent right- and left-handed components. For
other values of ¢, the basis components are mixed.

The I-th component L%, with £ ¢ I, of the orbital angular momentum bivector Lt is
given by (77). For the basis change in (81) with ¢ = /4, the frequency vector components
transform are expressed as a function of & _{_ and £ in terms of the Hermitian inverse of the
transformation matrix, i.e.

] 1 1

& = —ﬁ(é‘+ —§&2), (86a)
1 ] 1 1

§ = ﬁ,(&r +&0), (86b)

and similarly for d¢ and dg;. Again, the symbol j doubly represents a coordinate label in
the left-hand side and the imaginary unit in the right-hand side of (86b). We therefore can
express the orbital angular momentum component Lf in (77) in terms of the coefficients in
the circular-polarization basis in (86) as

: r c dg 1 N * 2
LY = jr(=1) ot €)A; /: 2717( JEL = ED(@er +0.)AE; D) A ,)
— &+ ED (O — 9:0AE ) AL — o) 87)
r c d%’ ¢ N * 2
=2n(=1) o, £) A /El ﬁ91(§1(8§iA(sg,+)) A7)
— & (00 AG ) Akry), (88)

a formula reminiscent of that of the spin for the standard electromagnetic field [4, Problem
7.27]. As we have seen throughout the previous pages, a large number of standard results
in the analysis of angular momentum for free electromagnetic fields naturally extend to
arbitrary number of space-time dimensions and multivector field grade. This brief discussion
on the orbital angular momentum and the spin of the generalized electromagnetic field and
their relationship to complex-valued circular polarizations, for generic values of r, k, and n,
concludes the paper. The remainder is devoted to appendices with details or proofs of several
results mentioned earlier in the paper.
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A Proof of the Stokes theorem

In this appendix, we prove the following statement: the flux of a tensor field M, antisymmetric
in the second and third components and with basis elements given by w; ; = e; ® e;, across
the boundary 9™ of an m-dimensional hypersurface V" is equal to the flux of the divergence
of M across V" for any m < k + n, and in particular for m = k + n. This Stokes theorem
thus gives

/ drxm (9 x M) = / dkrn=txmh oML (89)
vk+n 3vk+n

We prove (89) thanks to the generalized Stokes theorem for differential forms [21, pp.

801,
/dw:/ w, (90)
\% EA%

where o is a differential form and dw is its exterior derivative, corresponding to the operator
d=>)"dx;d;. 1)
jeT

The procedure we follow is almost identical to what was done in [2, Sects. 3.4-3.5], and
it starts by identifying w with the integrand on the right-hand side of (89). Using (53) with
M = Mg, we have

w= Z dxpe Apmo (m, m€)e,, x Z (xi — o) Te(j,0)0 (i, W (i o) (92)

meZ i,j, el
= Y dxjeo(j, j) — a)Te(00 (i, Oecioy, 93)
i,j el

having applied e, X W; ¢ ¢) = Amje€s ). We then let the exterior derivative in (91) act
on (93) to obtain

dw = Z Z dxm deL-(T(j, jc)o’(i, E)am ((x,- — (X,‘)T,;(j,[))eg(,',g). (94)
meZi,jlel

Since j¢ € Zyyn—1, we can identify m with j and write dx,(j jey = dx;dxjco(j, j°) to
obtain

dow = Z dxe(j, joyo (i, 005 ((xi — i) Te(j,0))€e(i.0)- 935)
i,jteT
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In parallel, we identify dw in (90) with the integrand of the left-hand side of (89), which
can be expanded as

D dxe(j oo (i, 00 (0 — @) Teg0))ee(i,0), (96)
i,j el

namely the same expression as (95), therefore proving (89).

B Flux of the angular-momentum tensor
B.1 Computation of the angular-momentum flux

Writing X — & = (x¢ — ag)eg + X; — o7, we may split the flux in (72) as a weighted sum,
namely

2% =ko(x — )Ly + oLy, —kiLy_, o7

where the bivector-valued integrals Z¢, Z; ,, and Z; _ are, respectively, given by

I, - / drpe / / e dEpe ot Dz,
Rk+n—1 EixE 2)([ 2X{

x (ec @ (F'€p 0 F €p + F €p 0 B €))), 98)
I / / / & e jonirenx; e
L+ Rk+n—1 E ><...[ 2)(( 2)([
x (xe 1 (B 6p 0 F @+ ep o F@p)). 99)
o dépe dsl‘ ]271(5 +E )X;
I[’i B ~/Rk+”_1 dxec //.':E'gx:.g 2)([ 2)([ Z Ze
~f ~l Al
x (0@ (B & o F' 6p +F @p 0 F @) ). (100)

We next evaluate these integrals, starting with Z,. Interchanging the integration order of

frequency and space-time, we evaluate the integral of & TTEITEDXT gyer space-time R¥*7~1
as the (k + n — 1)-multidimensional Dirac delta. After integration over & év to remove this
Dirac delta, we directly obtain

d I; - a3 A
I, :/ L e X (ee A (FZ(Eg) @F‘(—sp +FZ(§Z) @Fz(—ég))) (101)
e 4)(5

It will prove convenient to define an integral Z,,, form € 7, replacing e, inside the parentheses
in (101) by e,

d&ge Al 0 by ~l
T, = /_ e (B FEE) oF e+ FEnof (—£))). a0
Iy ¢
The integral Z; _ in (100) can now be evaluated in a similar way to Z; to obtain
I; =) al, (103)
1€T\L

where Z; is given by (102) setting m = .
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As for the integral Z; | in (99), we first rewrite the formula for Z; | by interchanging
the integration order of frequency and space-time, using linearity and making some minor
rearrangements and algebraic manipulations, as

Z;, = / /_  dée d&;c e
ZyXZy

Y Y by -
4 / FE)OF EH+F (&) oF (&
X (/ dxgceﬂﬂ(EHEz)-X@'Xg N ( EPOF Ep+ i Epo (ge)))
Rk+n—1 Axexy

(104)

Under the usual assumptions that the fields vanish sufficiently fast at infinity, the space-time
integral in (104) can be evaluated by integration by parts in terms of a derivative of the Dirac
delta as

jon e N, _ )
/l;k+n—| dX[t‘e/ 185 X/ZXK = J27-[ aé’z(a(‘éé +§%)), (105)
where the vector-derivative operator d £; is given by

9. = Y Auedy. (106)
teZ\l

Now, an extension of the proofin [16, p. 26] to our multidimensional bivector-valued integrals
in (104) shows that the derivative of the Dirac delta can be evaluated as

o L
i, == d&ge d&ye e
b .]27[ E/XE({ t

N Al ~l al
, FE)oF ¢E)+F E)oF (SQ;)))
d:.(6(§;+ &%) A 107
y ( £ (37 +8)) ( o (107)
Al N ~L ~l
1 FepoF ) +FE)ofF @)
= - df@c €es X 852 N 7 .
27 Jg, dxex, £i=—t;
(108)
Using the definition in (106), we can express (108) as
1
I;, = e Z AnZi s, (109)

teT\l

where the bivector-valued integrals Z;  are given by

Al ~f
c F 7 X F (
Iy = / ﬂ € X (et N <8€r( (El)> o Fe(_;:i) + afr( 2
= 4

)orin))

¢ 2xe 2x¢ 2x
(110)
Finally, we evaluate the derivative of IA?‘K 7/ 2xe) as
P €\ _ o F &) i &)
as,( ‘ ) = 2o 4 At —E (111)
2xe 2xe 2x;
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Using this expression, we may therefore rewrite (110) as
It,+ = It,l + A[[AIIII.O’ (1 12)

where Z; | and Z; o are, respectively, given by

d&ge A0 ~ 0 -0 L
Z. =/ el (e (0 &p) OF (—8p + (9 F €p) 0 F' (-8p) ) (113)
dé&e A . A A
o= [ fhaex(enEE) o 5 +FE) o -5)). (114)
2y 4)([

Substituting (101), (109), (112), and (103) back into (97), we obtain

Ke
2 =kenTe = - 3 (AT + AuTio) = ke ) oo, (115)
J teT\l meZT

where Z,,, for m € T is given in (102), and Z; 1 and Z; ¢ are, respectively, given by (113)
and (114).

The three bivector-valued integrands in (102), (113) and (114) are of the form
ey X (em N B), for some index m and some symmetric rank-2 tensor B. As for some indices
1 = (i1, ip) € J> it holds that e, x (em A u1) = 0, only some components of the tensor B
contribute to the integral. To determine which components of B contribute to the integral, we
compute the double product e; x (e,, I3 B) with the definition of the product I in (16),

e x (en B) = Y Brey x (e, Buy) (116)
I1eT
=Y ) Bio(m.if)es x (e ® exqum.i7)) 117)
leJr I7el!
= Ay Z Bee, jyo(m, j) €em, j), (118)
j€T\m

where we have used that I and its permutation /™ must be such that i f = {,i.e.that I mustbe
of the form ¢ (¢, j) for some j € Z. This observation fixes also the permutation I = (¢, j).
Besides, we can remove j = m from the summation as o (m, m) = 0. For each m, we need
thus consider only the components B¢, j), where j # m.

Computation of L,,. In (101), the tensor B mentioned in the previous paragraph is given
by

B=F()of (—&)+F &) ok (—&). (119)

In Sect. B.2 we evaluate its components Bg (¢, j) needed in (116). Substituting (181) in (116)
gives

e x (en OB) =28, Apexe Y o(m, j)ecimjy Y 0&5, |AE )P (120)
je\m oceS

where B, is given by

B = 4n* (=11, (121)
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and with some abuse of notation, o denotes in this equation both the signature of a permutation
and a sign. Substituting (120) back in (101) gives

d N
To= e Y on ey [ 5 (e, JAG P — & IAG P).
jeT\m =t
(122)

Assume that j # ¢, so that &; i= &;, regardless of the value of o. Then, splitting the
integral in two, and making a change of variables ¢ ; = —§&j in the integral with §; _ yields

d

- [t gihe or = [ coheg - el a2

=y =¢

d
= / goe ~ IR (124)

Ey

since —¢;— xeee = —¢7 ., and A7 1> = Ag; DAY ;) = A*(=¢; DA(=2; ) =
IA(—C i +)|2 thanks to the hermiticity of 1&(1; i) The second summand in the integral

in (122) coincides with the first.
If j = ¢, then g[,a,j = 0 X¢, and the integral in (122) is given by

d&ge
L 5 Gl OF + xdAd OP). (125)
E, <Xt
Splitting the integral in two, and making a change of variables {; = —&; in the integral

with §; _ shows that the second integral in (125) coincides with the first one, as it happened
in (124).
Substituting (124) and (125) back in (122) gives the final expression for Z,,, namely

d
T =2640 Y olm j)econ / g AR a2
j€I\m
— 28, Asen A / ey Ak P (127)
g, 2xe 0T o+

where we have used that e, j) = o (m, j)e, Ae;, thate, Ae, = 0, and the decomposition
§7 . =&;+ xeee.

With the definitionxy = —5 A 000 (£, £°), the bivector-valued integral Z,, can be expressed
in terms of the energy—momentum flux IT¢ in (17) across the (k +n)-dimensional half space-
time Vk+” of fixed x¢, for £ € {0, ...,k +n —1},in (59) as

1
Ty = —eyn Al (128)
Kg
Computation of Z; 0. In (114), m = ¢ while the tensor B is again given by (119). Substi-
tuting the components Bg (g, j) in (181) into (116) with m = ¢, and then back in (114) yields
an analogous equation to (122), namely

déye

Tio=BAu Y ot j)e. v & (5.4 1A DIP — & _ IAE; DP).

JeI\t
(129)
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It proves convenient to split the integral in two and separate the cases j # £ and j = £. In
the first case, i.e. j # £, noting first that 5;2’71]- = “;:Z,+,j = &;, making a change of variables
$; = —§; in the integral with §; _ gives

@r_z_/ﬂ_ T
/E.'[ 2)(; gt €j|A(§£!_)| - =, 2)(2 ( ;l)( §1)|A(;e,+)| (130)
dgee "

:/s ﬂZijIA(Cz,JF)I{ (131)

which cancels out with the integral & i+ and the integral in (129) vanishes for j # €. If j = ¢,
§7_¢ = —&7 ¢ = —x¢, unaffected by the change of variables {; = —§;. The integral with
&7 _ gives thus

dSev _ R e 2__/%_ o 5
/sz 2 & (—xo) IAE; I = e 20 (=) 1A DI, (132)

and the total integral in (129) vanishes too. Therefore,
Zio=0. (133)
Computation of Z; 1. In (113), the index m is again m = ¢, while the tensor B is now
given by
~f ~l ~ 0 ~l
B = (0:F (§)) OF (—&p) + (3 F (§p) O F (—&p). (134)
Substituting the double product (116) in (113) gives

d&e . dépe
I = Apo(t,0) es(t,[)/ — B + Age Z oft, J)ea(t,j)/ — Bee, -
2 4xi JET\b1 04X

(135)

In Sect. B.3 we evaluate the components B¢, j) needed in (116), namely £ = jand £ # ;.
Substituting the expression of By, in (211) into the first integral in (135), and expanding the
sum over o gives
d&ye d&ge N 2 ~ 2
/ 5 By = B / 5 (— AHAttEt|A(§é +)| - AUAtt‘ft’A(gZ ,)|

) 4)([ Ze 4)([ . .

la 1b

+2x7 (9 A7 ) - A& )

2a
+2 57 (05 A& ) - A€ )

2b
- €j4ﬂA“X8x(AMAtt§t (A(EE7+) ’ A*(EZ,_))

3a

— e py, At (A ) - AN (E;))- (136)

3b

We split the integrand in (136) into three terms, respectively, indexed by 1, 2, and 3, each
with consecutive pairs of summands labelled by a and b. In the integrand with label 1b, the
change of variables {; = —&; has opposite sign to the contribution from 1a, so the first
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integral is zero. Then, each of the integrands with labels 3a and 3b is an odd function of the
1ntegrat10n variable &, as can be verified with the change of variables {; = —§;. Indeed,
A(§ 7.+) transforms into A* (67 ) and (resp. A(E 7,—))into A* (67 ,)) and therefore the third
mtegral is zero too. It only remains the second 1ntegral which can be expressed with the
usual change of variables {; = —&; in 2b as

dépe . dége R .
/_Z Y By = 4x2(—1) ‘/ T)éx[((agtA(sz,+))-A (§72) —cc),  (137)

4x} 5,

where cc denotes the complex conjugate.

Proceeding in a similar manner, substituting the expression for B, j) in (212) into the
second integral in (135), and splitting the integrand into three terms, respectively, indexed
by 1, 2, and 3, each with consecutive pairs of summands labelled by a and b, gives

dée dége . <, R
L. a7 Brep =47 L. G (R g 0 Agr)l,~(A g0 0 ez ),)

la
— a0 ((A*&p ) 0 A )|, (A€ 0 Az )] )
1b

—2(=1)" & (0, A67 ) - A" ) +2(— 1) & (0, A 67 ) - AT )

2a 2b
—ertmannsep (A€ 0 Ak )|, +(A €0 0AG L))

3a

e AL (A*g ) 0 Ak )|+ (A6 0 Ak ), ) -

3b

(138)

As before, we consider separately the integrands. If the quantities A 7.4) and A*(§ )
commute, the change of variables ¢ ; = —& in the integrand 1b gives the integrand 1a with an
opposite sign; this sign cancels the minus sign in front. Besides, for commuting quantities, the
second summand of 1a (and of 1b) is the complex conjugate of the first summand. The same
change of variables { ; = —&; shows that the integrand 2b (resp. 3b) is the complex conjugate
of 2a (resp. 3a). Similarly, the same change of variables and commutativity assumption
applied in the second integrand of 3b shows that the second summand coincides with the first
one. We therefore have

ds c dé .
/AZ 4; Be,j) = 4712/ ZXZ (Att((A (é‘H)@A('g[ +))} )

¢ Ey 4
= 1 ((95,AG7) - A% — cc)
Ay (A (R (g g L) © Aeg )] —ce). (139)

Note that the rank-2 tensors with components (A* &; 01) ®© A(E 7 (,2))| ,j— cc are actually
antisymmetric in the indices ¢ and j and can thus be seen as a bivector component with
element basis e;;.
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Combining (137) and (139) back into (135) gives

d
I =477 Audn Y a(t,j)eg(,,,)/ 2& ((A*(&e L) OAE; - )
¢ “Xe

JEI\L,t

d&ge . .
+ B Ao (t, £) exrp) /: ( 27‘; xe((96AG7 ) - A%Eg.0) — cc)

+ Br A Z o(t, j) e, ])/_ iic Ej((8g,1&(‘g‘g’+)) 'A*(EZ,-r) — cc)
JET\L,t =

+ATT A Ay Y ot ) e
JEI\L,t

dé&ye

[ 8o (g 0 ey <)
=, ZXe

Let us denote by Z 1 the first summand in (140); the second and third terms in (140) can

be grouped into a s1ngle summation, denoted by Il 1»over j € T\ t. We denote by Iil the

remaining summand in (140). As e;(, j) = —o (t, ])e i A e and e; A ¢, = 0, the contribution

of I1 1 to the flux is given by

Z AuT! 1= J2mKkeApe Z Z o(t, j)esq,j

=y teT\E jET\L,t
d&ee N
/E E (A*Er0 0Az))],;—cc) (141)
= j2mkeAe Yy Y ot ) e )
tel jeI\t
d&pe 1on
[ o (Bezpoiel,—~«)  ao
= jdmwkeAge Z €1, /)
t,jelit<j
dé&ye "
f 2; ((A &) 0AE D), cc) (143)

where we have extended the summations to ¢t = £ and j = £ since these added terms are
zero in the Coulomb-£ gauge in (142) and noted that every ordered list of non-repeated index
pairs appears twice in the summation in (143). Interpreting A* (& i) O A(‘;‘ i4)—ccasa
bivector, we obtain

jzn > AT = -j2mat, zC)f

teT\L

S (Ao oAg ) —w). a4

Proceedmg in a similar manner, we can rewrite I 1 as

d o R
= prn [ 56 A (A 6 0) A ) - ) (145)
> A A
= B A / 2i‘ £, A (et ®A°G ) XAl ) —cc).  (146)

where we have also used that e, (ag,A*(sz,+)) . A(EZ’JF) = (e/0;, ® A* (7)) ¥ A(E@Q, as
can be seen by direct computation. Getting back to (115), and summing over ¢ € Z \ ¢, this
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first term of (140) contributes to the flux as

— o 2 ATy = (=) o (. E)
T e
e A*(E; AdEs
g, 2xe iy N ((3;2® &7.4)) x (Eg,+)—cc).
(147)

It is straightforward to verify that this expression is indeed a bivector, regardless of the value
of r.
Analogously, the contribution of 13 | is given by

Z AT} =—jro@, ) Y Y ot j) e

ey 1€T\E jeT\L,t
dé&pe
f 2& ( — 4T Ao xexe (A*(gz B QA(EZ _ )’ cc) (148)
E, 42Xt
Under the change of variable {; = —&; and the commutativity assumption, this equation
becomes
Z AT} =—jro@, ) Y Y ot e
ey 1€I\E jET\L 1
dé&ye . A "
[ 5 (e i ) 0 A% )] —cc).
=, 2Xe ' N

(149)

Renaming now ¢ as j’ and j as ¢, this equation coincides with (148), except that o (¢, j)
picks a minus sign. The integrand is thus an odd function of &; and the integral in (148) is
zero, and therefore

Z AuZ; | =0. (150)
zez\e

Combining Z,, in (127) with (133), (147), (142), and (148) into (115) gives
QL =(xper —a) AT + ja(=1) o (L, £€)
L5t n (0 8% ) x Ay ) — )
dfie

€

_ jomo(e, z‘)/ A*(&e D OAE ) —cc) (151)

where IT* is the energy—momentum flux across the region in (17).

B.2 Evaluation of the tensor components B, (¢, j) for Z,, and Z; o (Lorenz Gauge)

We start by listing some useful identities relating interior and wedge products [1, Sect. 2.2].
Given two vectors u and v and a r-vector w, the following expressions hold

u_l(vaw)=—-v_1(u_w), (152)
and

ud(vAW) = (=1 -V )W+ VA (u_w). (153)
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In addition, given two vectors v and v’ and two r-vectors w and w’, then it holds that
VAW - (VAW)+(Vaw)- (vaw)=(v-V)(w-w). (154)
Also, for a vector u, an (r — 1)-vector v and an r-vector w, it holds that
@Av)-w=(D"uaw - v (155)

In the tensor definition in (119) we need both FZ (&7), given in (71), and FZ(—SZ). The

latter is evaluated noting that the real-valuedness of the field implies that ﬁ'(—’;‘ )= P (&) as
follows,

I}K(_SZ) — )27 A xexe F(_EZ,+) 4 e /P A xexe F(_SZ,—) (156)
— 2T Auexexe ﬁ‘*@[,) 4 o/ 2m Ao xexe F*(EéJr) 157)
— Z o J2m Auo xexe ﬁ*(EZ,J)' (158)

oceS

N
Substituting the definition of F givenin (71) together with (158) in the tensor definition (119),
we obtain

B= Y elmaneormnen (b )0 F €, +FE,) 0F E,). (159
01,00€S

Let us define B?192 ag B9192 = ﬁ(&gm) ©) F*(Egm) + le‘(’;‘gm) ) F*(ng); we need to
evaluate the components B:(‘[(Tj). Using the definition of the products ©® and ® in (11) and (12),
the i j-th component B/ is given by

BY = A (€ 0 R, - (B 670 Lep) + (@ ARG, - (67, nep)

(160)
= A2 ((e 0 B0 - B g,y L))
(=D A FE ) F () + (e 2R, 0) - (F (67, L e,-)) (161)
= (-1 A (e o FEg,)) - 6 0 Eg,,)
o172
(e R, ) - e F )~ A5G, F ). (162)
e

=aj;

where we have applied (154) in (161) and the identity v_1w = (—1)&ME@@®+aMlyy v (],
Eq. (21)] in (161) and (162), and have defined the quantities afjl 2 for ease of presentation.

Substituting the potential in the Fourier domain, F(§) = j2mE AA(E), and subsequently
using (154) yields

B, F € ,) =477 (Er g AAGL,)) - (Eroy AATEr,))  (163)
=477 (B10, 870y (A7) - A7E7 )
~ (81 I AGL)) (o 1A GEr,y)).  (164)
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We note that the wave-equation condition §; , - §; , = 0, together with the identity §; , =
Eé o + (o1 — 02) xe€¢, With o1, 02 € {41, —1}, implies that

Ei o 10 = (0100 — DAwx;. (165)

Also, the Lorenz-gauge condition in the Fourier domain, namely §; , A io) =0=
§7 - A*(Sg,(,), implies that

£7, A&, = (01 —o)xeer 1A ,,). (166)
Erg LA E7,,) = (01 —o2)xeer A A*(Eg,,). (167)

Substituting (165)—-(167) back into (164) yields

B0 B 610y =477 (@102 = DAwx (A, - A6 y)

+ (01— o xR (e D AGy,)) - (e 1A GEr,y)).  (168)

Turning back our attention to ozf 192 substitution of the potential in the Fourier domain,

F(§) = j2mE A A(&), followed by the use of (153), gives

e IF@E; ) =2 (=D (e - &7, )AG ) T Ei, A6 2 AE,)))  (169)
= —j2m((—=1) Qiikgq, AG7,) —E7o A (e 2 AG,))).  (170)

We therefore have for ¢/ * (and similarly for «%;”*), apart from a factor 4r?

o7 o ((—1)’Aii$z,o,,i5(§z,g.) — (7.0, A (e A(Ee‘,a,))))
(D B5587.0y A Cr) — (10p A (e I A E7,))  (TD)
= 2145701800,/ A G 0) - A" (€7 )
= () Dtk g AG ) (870 A (e 1A E7,))
— (=1 A4k, (G0 A (6 S AG7,)) - A7)
+ (Eroy A (6 1 AG7,)) - (7o, A (6 A GE,))). (172)
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Using (155) in the second and third summands and (154) in the fourth summand, we have
apart from a factor 472

a1 o Dii A jiE7 o1 1600y AET ) - AT (E7 )~
— ik o, (67 gy - A(Ee‘,al)) (e A*(SZ,(Q))
— Ajibion (i A G y) - (6 2 AG )
+ g b (e JAEG ) - (6 1A E )
~ (870, 2 (61 A AGG,))) - (B, 1 (e 2 A ,))) (173)
= 408570, 57,00, /A E7.0) - AT (670~
— 2iik7 gy i (67 0y I AG L)) - (€ DAY E7,)
— 24710y (B S A (E1y)) - (6 1 A7)
+ (€ Ero) (e I AG,)) - (e I A (L)
— (e 1 (870, I AG7,))) - (6 1 (870 1A G ,))): (174)

where we have used (152) to swap the product order between §; . and e; and between §; .
and e;. Finally, substituting the identities (165)—(167) into (174) gives

a7 o AiiAjif o) gy AGE ) AT E )
— Aii&7 4,02 — o) xe(ec 2 A(Eg‘,gl)) - (ej 1 A*(’égjgz))
— A&7 5y j(01 — 02) xe (&0 A*('g'zm)) < (ei 2 A(Sz,g, )
+ (o102 — DAwx] (e 1 A& ,) - (6j 1A% ,,)
+ (01— 02 x7 (e 1 (er 1 AE,))) - (€ 0 (e 1 A*(E ). (179)

We continue our evaluation of Blf’j' % by considering separately the cases oy = o5 and
o1 # o7. First, for 61 = 03 = o, and combining (175), both for al‘.’j‘az and (x;’i‘ %2 and (168),
we express Bi"j" in (162) as

BY? = 4n (=) A A 2811 A6 01670, AG) - A G, (176)
=872 (1), &1 1A O (177)
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For 0y = o, and 0o = —o = &, combining (175) and (168) apart from a factor
4712(—1)’_1A,~,~Ajj, We express B;’j(’ in (162) as
Biaj& & AiiAjjgé_,o,igf_,é,j‘&(gf_,a) 'A*@Z,&)
+24i&; ;0 xe(ee I A(Ez,g)) (e A*(éz,a))
—24ji€75 o xe(ee 1A E7 ) - (e 2 A,))
—2Auxi(eiaAEs,))  (ej 1A G )
+dx(ei 2 (ee 1 AGE,))) - (ej 1 (e 2 A™(67,5)))
+ Aii A& 5 &5 iAGE ) - AT (€7 5)
+24€, 0 xe(ee AG;,) (e 0 A* (&)
— 24850 xe(ec 1 A*(§7 5)) - (e D AE7,))
— 2Au)([2(ej | A(Eg’g)) . (ei .| A*(Sé,&))
+4xZ () - (e 1 Ag,))) - (e 2 (e 3 A7)
— 2 (—280xt (AGr0) - A*E,0) +4xd(ec 1 AG; ) - (e 2 A7) ).
(178)
We now set i = ¢, and note that e _I (e; I A(EZ’(,)) =0,& 5, =0xe-and& 5 , = —o e,
to simplify (178) as
B o Apdjjo xiki s A7) A* (g 5)
+2Axt (e 1 AEG,)) - (6j 1 ATE; )
— 24675 0 xe(ee 1A E7 ) - (e 1 AGz,))
—2A¢x7 (e A(Ez,g)) (e 1 1&*(52,5))
— AMAJ‘J'E[,G,J-GXZA(EZ,U) 'A*(Sg‘,&)
+24E; 5 o xe(ee 2 A ,)) - (ee 1 A*(E;5))
+ 240 %7 (e0 2 A* &;5)) - (ej A(Eg,a))
— 240 x}(ej A(é’gjg)) (e A*(Ezﬁ))
— Ayj (—ZAMX;?(A(E@G) 'A*(Egﬁ))
+axd(ec 1 AGr,) - (e 1AM E;)). (179)

Now, cancelling several common terms, Eq. (179) becomes

BJ? o ApdjjoxiEr s — o )AE ) - A*(E5)
- 2Ajj (éi’(}yj - gz,gyj)UXZ (eZ - A*(SZ,(})) : (eZ - A(Sg,g))
— Ayj (—2AMX@2(A(§2,G) . A*(Ezg,))

+ax?(ec 1 AG;,)) - (eg_lA*(Eg'&))) (180)
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At this point, we need to distinguish two separate possibilities: j 7% £and j = £. If j # £,
it holds that &; i= i 5. j and Ag; = 0, and therefore (180) vanishes. When j = ¢,
ther_l Ez’mj = _SZ,&,]‘ =o0 )¢, and Ag; = Agg and (180) vanishes too. We conclude that
Bg&, h= 0if o # &, regardless of the value of j. Moreover, the same steps (179)-(180)
similarly prove that B;’(‘z iy =0ifo 7 o foranyi.

Since the only nonzero contribution is given by Blf’j" in (177), substituting this latter

equation in (159) yields
Bee.jy =872 (=1)""xe Y 0 &, jIAGE )P (181)
oceS
B.3 Evaluation of the tensor components B, (¢, j) for Z; 1 (Coulomb-¢ Gauge)
As this section follows similar steps to those in the previous one, the presentation is stream-
lined somewhat.

A N
Substituting the expressions for F ¢ (& ) and F (—& io) respectively, given in (71)
and (158) in the tensor definition (134), we obtain

B= Z ejZNAa(Ul*Gz)szzBfflffz, (182)

01,02€S

where the rank-2 symmetric tensor B?'?2 is defined as

B = (95 F(E7,,) OF (7,,) + (9:F¢7,,) 0 F &), (183)

Following the same steps as in (161)—(162), the ij-th component Bg.‘ 2 is given by

B = (=1 T A Ay (o) el - Ay (0P ,) B 6r,y).  (184)
where o}, and similarly a7}, is given by
ofl 7 = (e,- a (ag,ﬁ(szqal))) : (e, a F*(gz,gz)). (185)
Substituting the potential in the Fourier domain, we obtain
0 F(E; ) = j2mes NAGE ) + j2mEr, A (0,AG ). (186)

Using this identity together with (154) allows us to write the last term in (184), apart from a
factor 472, as

(06 FEr,,)  F (67, o (& AAGET,)) - (Bry, A A Eryy)
+ (80, A (064G ,)) - (B AA L) (187)
= (e §7,,)(Akz,) - A"E7,,))
— (870, I AG,)) - (6 2 A* ;)

+ Er, 7.0 (06 AEL,)) - A 7))
— (67,0, 1 (06AG7,))) - (670, 1 A" (E7,)).  (188)
In the Coulomb-£-gauge, for which e, _1 A= 0, the conditions (166) and (167) become
E7, JAG;,,) =0, (189)
£7,, JA*(E5,,) =0. (190)
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Substituting the wave equation condition (165) together with (189)—(190) into (187) gives,
apart from a factor 472,

(06 FE7,))  F ) ¢ Auty (A7, A&7 ,)
+ (0102 — DAwx?((9:,AE7,)) - A*(¢z,)). (191

With a similar substitution of the potential in the Fourier domain followed by (153), we
write

e 1 (9 F(E;,)) = jor (e,- (e AAE ) e (Ero A (3&5(52,01)))) (192)
= j2m (=D e €A, + e A (e 1 AGE,))
D (e 60 (5 A G 0)) + g, A (61 (0:,AG )
(193)
= —j27 (=1 41 A, — e A (e 0 AG,,))

(1) At gy (6 A7 0) =70, A (60 (95A7,,)))-
(194)

Combining (194) with (170), we therefore have for (xfj‘ % (and similarly for a;.’} %), apart

from a factor 472,

ofl 7 o ((—1)’A,~,A(§Z’al) —e A (e L AGG,))
() A g (5 A 0) — Ei A (e (95AG )
(D A8y A E ) — By A (€1 A GEE,))  (199)
= 201467 oy AE7 o) - AT (67 ,,)
— (D" 20AE7 ) - (870, A (e 1 A E 7))
= (=) Ak o (e A (e S AGG ) - AT ,)
+ (e A (e 2 AGE,))) - (o, A (€ 2 A7)
+ AiiA b7 0y 60y, (5 A ) - A* K,
— (D i o, (05 AGE ) - (B7o, A (65 2 A*(E7,))
— (1) Ak g j(E oy A (e 2 (054G ,)))) - A6,
+ (810 A (€0 (054G ,))) - (Eioy A (6 I A E,))). (196)

Using (155) in the second, third, sixth, and seventh summands and (154) in the fourth and
eighth ones, together with (152) to swap the order of the interior products between & 7.0, and
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ei,§;, ande;, and ¢ and e;, we obtain

o} o Ain 7 g, (AT 0) AN E ) — Air(ef 2 AT E ) - (870, 2 A7)
— Ajjki gy (6 S A G ,)) - (e 1 AG,))
+ (e &7 ,,)(ei 1AEL,)) - (6j 1 A% ,,))
—(ej (e A*(E7,))) - (i o (E.0, 1 A7)
+ AiiAjiE7 0, 60y, (5 A ) - A KL,
— Aiiki 0, i(6) S A&7 L)) - (67 1 (06A 7))
= Ajibi oy i (Ero A A G ))) - (6 1 (06 AG7,,))
+ (50, - Ei0y) (e 0 (054G ,))) - (6) 1 A* ;)
— (&5 1 (7.0, S A 7)) - (6 1 (670, 1 (06 AE7,))))- (197)

By taking the derivative of (189) with respect to &;, with t #~ £, we have

§io - (9:AGE7,)) = —& 1 AG7,,)- (198)

Substituting (165), (198), and (189)—(190) back into (197), this equation simplifies to

a7 o Aud ik, AEL ) A6 )
+ (o102 — D) Agex} (e 2 (3&1&(52@1))) (e A*(Ezm))
+ Aii&,, (e 2 A*@Z,@)) (e A@Z,a]))
— Aji o, (e S AT E,,) - (& S A,))
+ Auki(ei dAEG,) - (6j 1A% &)
+ 414870, 18700, (06 AG 1 0) - A7 ) (199)

As in the analysis of the tensor components for I, and Z; o in B.2, we continue our
evaluation of Bl.(’,,‘(r2 by considering separately the cases o1 = 07 and o1 # o». First, for
o1 = 0 = o, combining (199) for &> and «} 7 with (191) and (198), we write the tensor
component Blf’j” in (184) apart from a factor 47r2(—1)’_1A,-,-Ajj as
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B o AinAji& 5 A7) A (E ) + Ajdiiky 5 Ak ,)  A*E )
+ Aiifgja,,-(ej - A*(gé,g)) G A(EZ,U))
— 27 q (0 A 7)) - (6 I A7)
+ A&, (e 1A% &) - (e o AG,))
- Aii%‘[,g,i(et AT @Z,a)) “(ej A(sﬂa))
+ Auti(ei aAGE; ) - (ej oA E7 )
+ Auki(ej 2 AE; ) - (6 2 A*(E7,))
+2Ai 47 o 60, (05 AL ) AT )
— Aij Ak (A, - A*(Eg,)). (200)

Evaluating (200) for i = j = ¢, and noting that ¢ # £, gives
A 2 A A
Bif = d4n* (1) (A“Anft|A(§z,g)\ —2x7 (9, A67,)) 'A*('Ez,o))- (201)
Similarly, evaluating (200) for i = £ and j # ¢, and noting that ¢ # £ and j # t, gives

By =42 (=1~ A (oxe(e; s A% E,)) - (e 1 AG,)
—oxe(e, 1A &) - (6j S AG; )

+24jj0 50k (95, A ,)) ~A*(§g,5)) (202)
=47 (Auo e (A", © AG7 )|~ (A*Gr0) @A) )
—2(=1) o xek; (9, AG; ) -A*('Sg,(,)), (203)

where we have used the definition of the ©® product in (11) and the identity e¢; 1 A =
(=D"ALe; [1,Eq. 21)].

For —o3 = 01 = o, combining (199) for afﬁ and ozj.’f with (191), we can write the tensor
component Blf’j" in (184) apart from a factor 472 (—1)"~! AjjAjj as

BJ? o AuAjig s AEG ) AT 5) — 200x7 (6 1 (0,A(7,))) - (ej 1 A*(§;5))
+ Aiik (e AAY €7 0) - (e 1 AGG ) — Ajikrs (e AATE; ) - (e 1 A ,))
+ Auki(e; 1AG; ) (ej IA* ) + AidjiEr ks (05 A& ,)) - A% (Er )
+ Aji ik 5 AEG L) AT (Er5) — 240 xE (65 0 (05 A7) - (e 1 A% (E7 )
+Ajikr, (e a A Er ) - (e aAG ) — Aud, (e 1A ) - (ej 1 A ,))
+ Auti(ej 1AE; ) - (e AT ) + AiiAjiki o 6155 (06 MGG ) AT 5)
— Aij Ak (A ,) - A" ) + 240 Auexi (05 A ) - A (67 ). (204)
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For i = ¢, using that 7 # ¢, the Coulomb-{-gauge condition e; _| A and its consequence
e¢ 1 (0g,A) =0, yield
BZG ;) & Awoxe(ej 1 A* (€7 ) - (e 1 AEg,))
+ Ao xe(e 2 A* (&7 )) - (6j 1 AGg,))
+Auwdjioxidis (0 AG,)) A7)
— DA &g o xe (9 AE7,)) - A7)
— Aji Ao xeAE7,) - A* (€7 5) — Ay Ak (A7) - A" (67 5))
+2A0 A x? ((06AG7 ) - A"z 5))- (205)
If we also consider j = £, using again the Coulomb-£¢-gauge condition and that ¢ # £ in (205)
gives
BES = 4m2(=1) A (202 (06 AG7,0) - A1) + Accdubi (A7) - A%(E7,)
—2x7((9:,A&z,)) - A*(Ez,&))) (206)
=472 (—1) Apduk (AEs,) - A*(E7 ). (207)

For j # ¢, noting that t # € and j # ¢, we evaluate (205) as
B ) = 4m2 1 A A (Aueo e (e 1 A Eg0)) - (e 1 Ae,))

+ Ageo xe(e A*(SZ,&)) ~(ej A(SZ,O’))
+ AeeAjjUXeéj(f?s,A(Ez,g)) -A*(é’z,&)

— Audjigox(0aAEs,) A Er)) (208)
=42 (1)~ A (o xe (e 0 A Er0)) - (e 1 Ae,))
+oxe(e 1 A"E,) - (e 1 AGg,)) (209)

= —4r2au0 1 (A 670) 0 Ar,)) ], + (A E0) 0Ar,))],;). 210)

where we have used the definition of the ® product in (11) and the identity ¢, 1 A =
(—=D"A L e; [1, Eq. (21)]. Note that the product © could be replaced by @ in (76) with
an overall change of sign, since the off-diagonal transposed components of both products
coincide [1, Eq. (22)].

Finally, using (159) and, respectively, combining (201) and (207), and (203) and (209),
we obtain

B = 471" Y (Awduti| A, — 202 (0:AG7,)) - A€,

oceS

+€j47TA”‘7X‘X‘AUAn%} (A(Sé,g) 'A*(EZ,&)))’ (211)
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and

Bejy =417y (Andxe ((A* 7, OAE:))|,,—(A* ¢ ,) O AE;,)) |A,,)

oceS
“2(-1 o xiti (05 AG,)) - AT(E;,))

_e/Am Ao yexe Ao e ((A* (‘EZ,&) 0 A(Eé,a)) ‘jt+(A*(§é.6) o A(gag)) |tj>'
(212)

C Spin components: ‘“canonical” analysis

For the standard electromagnetic field, the intrinsic angular momentum is defined only for
the spatial components of the angular momentum bivector .Qf[ For the sake of simplicity, let
o = 0. For generic ¢, we study thus the components Q% with I € 71», that do not include ¢,
i.e. £ ¢ I.From (64), and writing I = (i, j), with i, j ¢ £, we have to evaluate the following
integral:

.Qf = O‘(@,ec)/ dxgc (xiTs([,j) _.ijg([’i)). (213)
R

k4+n—1

The following analysis is inspired by Sects. 12 and 16 of Wentzel’s book [20], which describe
how to obtain the spin components from the canonical stress—energy—momentum tensor. Our
analysis bypasses, however, the canonical tensor, and the appropriate adaptations have been
made. Using the expression of the non-diagonal components of the stress—energy—momentum
tensor in (15) in the integrand in (213) gives

—xi Y Appo(L.0O0(, L F,q 1 Fui
LeZ,_y:,j¢L
+x; Y. Appo(L. 0o, LY F,q 1y Fuiy (214)
LeZ, _y:4,i¢L
Let us split the summations over L into the cases where i (resp. j) belongs to L and those
where it does not, and focus of the former. When i (resp. j) beloygs to L, we may define

L as a set in Z,_ such that €,i, j ¢ L, so that the original set L is now given by L U i
(resp. L U j). We rewrite (214) accordingly as

— Z xiAiiApro (e, L), €)o (j, €, L)) Feqe,i,r) Feiijin)
LeT,_»:0.i,j¢L
+ Z XjAjjALLU(8(j, L),(Z)a(i,a(j, L))FS(Z,jVL)Fg(i’j’L) (215)

LeT,_y:t.i,j¢L

= - Z ALL(AUU(S(L L), €)o (j,e(L,))xiFe,i,)FeiijL)
LeT,_yit,i,j¢L

— Ajjo(e(L, j), €)o (i, e(L, j))xjFs(e,j,L)Fs(i,j,L)>- (216)

From the definition of the field from the potential, we have
Feiijry) = Aiio(i,€(j, L))0; Aejyr) + - - - 217
F&‘(i’j,l‘) = Ajj(f(j, e(i, L))ajAg(,;L) 4+ ... (218)

@ Springer



1047  Page 34 of 37 Eur. Phys. J. Plus (2021) 136:1047

Ignoring the terms in the dots, which do not contribute to the spin, and, respectively, substi-
tuting these two expressions in the two appearances of Fg(; ; 1) in (216) gives the following
expression for each summand

—Arpo(j.e(L,))o(i,e(j, L)) (G (eG, L), €)xi Foe,i,1) 9 As(j,1)
= 0 (Lo ), 0% Fecej0)0 Acton))- (219)
We continue with the following manipulations,

Xi Feq,i,1)0i Ae(j,L) = 0i (xiAe(j,1) Feein)) — AejL) Fece,i,L) — Xi Ae(j,0)0i Fo(e,i,L)-
(220)

A similar expression holds for the second summand in (219). If we now neglect the third
summand, as unrelated to the spin, and argue that the first is zero after integration in (220),
substituting these back in (219) yields

Apro(j.e(L, D))o (i, e, L))(a (G, L), £)Ae(j.1) Fee.iny — o (e(L, j), E)Asa.L)Fe(e.,f,L))-

(221)

In the Coulomb-£-gauge, we also have that
Feeiiny) = Awo (€, 8(i, L)) Asii, L) (222)
Fee,j,L) = Awo (£, €(j, L))0eAs(jL) (223)

and substituting these expressions in (221), and using that o (¢(i, L), £)o (¢, (i, L)) =
(=11, gives

ApArpo(j.e(L,))o(i, e(j, L))(a (eG, L), €)o (€, e(i, L)) Ae(j,1) 00 Asi, 1)

—o(e(L, j), )0 (€, e(j, L)) Asii,L) 3eAs(j,L)> (224)
= (_1)r_1AMALL(7(j» e(L,i))o(i,e(j, L))(Ae(j,0)0eAeti,1) — Aeti,1) e Ae(j, L))

(225)

= ApArro(L,i)o(j, L)(Ae(j,1)0eAsi,L) — Asi,1)00As(j L)) (226)

where we have used that —(—l)ra(j, e(i, L))a(i, e(J, L)) =o(L,i)o(j, L).Indeed, using
[7, Appendix A], we have o (L, i)o(j, L) = a(i, e(J, L))a(e(i, L), j) and it also holds that
(=)o (j, &G, L)) = o (e, L), j).

Getting back to the integral in (213), the £-spin component Sfj is then given by

S =—Auo(t. £ Y Apo(L.i)o(j. L)
LeT,_»:0,i,j¢L

./l;H . dxge <As(i,L)8€A£(j,L) - Ag(j,L)aeAs(i,L)) (227)
For classical electromagnetism with r = 2,k = 1, n = 3, and £ = 0, we have L = 0,
o(i, j)o(j,i) = —1, and the spin components are given by the standard formula (e.g. [10,
Eq. (4.83)])
/3 dx123(A;d0A; — AjdoA;). (228)
R
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Continuing with the integral in (227), we express the potentials in terms of their normal-
mode decomposition:

AGx) = / dgfé 27 X(( J27 Ao xexe A(E )+e—12ﬂﬂuxzw A(S )

2xe
(229)
d
AeeaeA(X)Z/ Jj2m S R LSPVECL T8 Xz(XeeJZHAMXM/ A@
Ey 2xe
—Xee TR ), (230)

where §; = § — §,e¢ and similarly x; = x — xper, x¢ = +/—Apé;-§;and §5 L =
Elf + xce,. Writing

Aéi(&[) — o2 Awxexe A(§Z+) 4 o J2m Avexexe A(gﬂ_)’ (231)
we may thus evaluate the integral by using a multidimensional Dirac function as

dépe dgje

Azzf dxge Ag(i, )¢ Ac(j,L) = j2ﬂ/ ¢
Rki+n—1

EZXE[ 4’X€X2

27 (§7+E ) x; 40+
~/Rk+n 1 d-xé e/ 7[5[ E X(A L)(§Z (] L)(E )

(232)
. d%'g dSZL Al —
:jﬁ'/; . 2xe 8($[+§ ) (, L)(&[ As(j L)(&Z‘)
ZyXEy

(233)

. d&ee 204 -
:jn/.:i'( 2 A L EDAL (D (234)

Expanding the Fourier components of the potential in (234) yields
Aggrp (&) = e/ AXT A G (67 ) e T Ay (Ep ), (235)

and similarly

Ag) (&) = /PR ) (—E + xeee) — e TN Ay (—E 7 — xeer)
(236)

= eI A1y (=g ) — TP Ay 1y (85 ). (23)
Taking the product of (235) and (237) yields

efdmAuxexe Am,m(éz,ﬁ Aa(j,L)(—Eg,,) - Aa(i,L)(é'z,Jr) A,s(j,L)(—’;'z,Q
+ Acir) ;) As(j,L)(—'éz,_) — e AT Acexexe As(i,L)(E[,_) Aa(j,L)(—Eg,Jr)- (238)

Proceeding analogously with the second summand in (234), Ag(j,1)0¢Asi, L), gives

el4m Auxexe As(j,L)(Ez,Q Ag(i,L)(—Eg,,) - Ae(/,L)(Eg,Jr) Ae(i,L)(—Ez,Q
+ Ay ;o) Ae(f,L)(—'éz,_) — e AT Acexexe Aa(j,L)(é’z,_) As(i,L)(—§g,+)- (239)
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With the change of variable §; — —&jp, and noting that —§; . = —(§; &+ xce0) = —§; F
xee¢e — +&; -, we thus have

eJ4mAwxexe As(j,L)(—&z,_) As(i,L)(Eg,Jr) - As(j,L)(—Ez,_) As(i,L)(iz,_)
+ As(j,L)(—§2,+) As(i,L)(‘é[,Jr) — e AT Acxexe Aa(j,L)(—Ez,Jr) Aciiny (7). (240

Combining (238) and (240) with its corresponding —1 sign, cancelling common terms
(assuming that the relevant quantities commute), and grouping common terms yields the
following,

—2(Ae1) &7.) As(j,L)(—’s'z,Jr) — A1 7) As(j,L)(—%,_))
= —2(Ae0)Er ) AL Er ) — Acany &7 ) AL (R D). (24D)

With the change of variable §; — —&;, and noting again that §; , — —§; ., we thus have
as final result

—2(Aeii,) (&7 ) ALy &7 ) — co). (242)
Putting this equation back into (234) and then into (227) gives

G =j2mo .t > Appo(L,io(j, L)
LeZ, _o:0,i,j¢L
d&ye

/~ 2% (Ae.) €74 AL1) E7.) — co)- (243)
Ey

The i j-th spin component Sf,. coincides with the corresponding bivector component (79).
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