Skip to main content
Log in

Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Our present study reports on the synthesis of NiO–CdO–Gd2O3 nanocluster via sol–gel autocombustion route and investigation of its structural, morphological, and dielectric properties as a function of both temperature and frequency. The X-ray diffraction (XRD) pattern of the nanocomposites is refined with the structural parameters containing cubic phases of Gd2O3 (space group Ia-3), monteponite CdO (space group Fm-3m), and NiO (space group Fm-3m), and its grain growth is observed in the nanometer range. The Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX) spectra with elemental mappings confirmed fundamental metal oxide (M–O) stretching vibrations and elemental fingerprint with atomic and weight percentage, respectively. Outmost dielectric permittivity (\({\varepsilon }_{r}^{{\prime}}\)) ~ 1.7 × 105 with moderate dielectric loss ~ 1012 is observed at 573 K (frequency @ 5 Hz) and its dielectric relaxation is explained by well-known Maxwell–Wagner type interfacial polarization accompanied by grain and grain boundary contribution. The frequency-dependent imaginary modulus (\(M^{\prime\prime}\)) spectra are fitted with modified double Kohlrausch–Williams–Watts (KWW) function for grain and grain boundary contribution and asymmetrical, suppressed \({M}^{{\prime}}\mathrm{versus}M^{\prime\prime}\) spectra recommends non-Debye type relaxation phenomena. The Cole–Cole plots of impedance \({(Z}^{{\prime}} \mathrm{versus} Z^{\prime\prime})\) divulge the contribution of grain and grain boundary explicitly and their corresponding activation energy is estimated 0.31 eV and 0.34 eV, respectively. The real conductivity (\({\sigma }_{ac}^{{\prime}}\)) is well fitted with double Jonscher power law including grain and grain boundary contribution and variation of their frequency exponent with temperatures helps us to interpret the conduction mechanism. A week crossover between polaron delocalization (overlapping large polaron tunneling) to localization (non-overlapping small polaron tunneling) is observed through weak quantum mechanical tunneling within our observed temperature window. Between 298 and 573 K, the electrons and their accompanying distortion within the lattice, originated due to self-trapping excess charge carrier, become delocalized and later it become localized within its neighboring atoms with high thermal treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. A.O. Juma, E.A.A. Arbab, C.M. Muiva, L.M. Lepodise, G.T. Mola, J. Alloys Compd. 723, 866–872 (2017)

    Article  Google Scholar 

  2. A. Sharma, P. Sanjay Kumar, Nanosci. Nanotechnol. 12, 82–85 (2017)

    Google Scholar 

  3. T. Guo, M.-S. Yao, Y.-H. Lin, C.-W. Nan, CrystEngComm 17, 3551–3585 (2015)

    Article  Google Scholar 

  4. T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber, P. Fornasiero, C.B. Murray, J. Am. Chem. Soc. 134, 6751 (2012)

    Article  Google Scholar 

  5. T. Kida, T. Doi, K. Shimanoe, Chem. Mater. 22, 2662 (2010)

    Article  Google Scholar 

  6. C. Yuan, H.B. Wu, Y. Xie, Angew. Chem. 53, 1488–1504 (2014)

    Article  Google Scholar 

  7. M. Cui, X. Meng, Nanoscale Adv. 2, 5516–5528 (2020)

    Article  ADS  Google Scholar 

  8. P.V. Rao, T. Satyanarayana, M.S. Reddy, Y. Gandhi, N. Veeraiah, Physica B 403, 3751–3759 (2008)

    Article  ADS  Google Scholar 

  9. F.C.W. Zhou, H. Yao, P. Fan, J. Yang, Z. Fei, M. Zhong, Green Chem. 15, 3057–3063 (2013)

    Article  Google Scholar 

  10. P. Senthilkumar, M. Selvakumar, P. Bhagabati, B. Bharathi, S. Karuthapandian, S. Balakumar, RSC Adv. 4, 32977–32986 (2014)

    Article  ADS  Google Scholar 

  11. R. Kumar Tamrakar, D.P. Bisen, N. Brahme, Res. Chem. Intermed. 40, 1771–1779 (2014)

    Article  Google Scholar 

  12. F.J. Morin, Phys. Rev. 93, 1199–1204 (1954)

    Article  ADS  Google Scholar 

  13. S. Karmakar, B. Panda, B. Sahoo, K.L. Routray, S. Varma, D. Behera, Mater. Sci. Semicond. Process. 88, 198–206 (2018)

    Article  Google Scholar 

  14. K.O. Egbo, C.P. Liu, C.E. Ekuma, K.M. Yu, J. Appl. Phys. 128, 135705 (2020)

    Article  ADS  Google Scholar 

  15. M. Suganya, D. Prabha, S. Anitha, J. Srivind, S. Balamurugan, V.S. Nagarethinam, A.R. Balu, J. Mater. Sci. Mater. Electron. 28, 12348 (2017)

    Article  Google Scholar 

  16. D.M. Yufanyi, J.F. Tendo, A.M. Ondoh, J.K. Mbadcam, J. Mater. Sci. Res. 3, 1–11 (2014)

    Google Scholar 

  17. Y. Zhydachevskyy, V. Tsiumra, M. Baran, L. Lipinska, P. Sybilski, A. Suchocki, J. Lumin. 196, 169–173 (2018)

    Article  Google Scholar 

  18. E.C. Singh, H.H. Singh, H.B. Sharma, AIP Conf. Proc. 2265, 030140 (2020)

    Article  Google Scholar 

  19. K. Susumu, P.R. Frail, J. Angiolillo, M.J. Therien, J. Am. Chem. Soc. 128, 8380 (2006)

    Article  Google Scholar 

  20. R.S. Manna, P. Das, M.D. Souza, F. Schnelle, M. Lang, J. Muller, Phys. Rev. Lett. 113, 067202 (2014)

    Article  ADS  Google Scholar 

  21. S. Giannini, A. Carof, M. Ellis, H. Yang, O.G. Ziogos, S. Ghosh, J. Blumberger, Nat. Commun. 10, 3843 (2019)

    Article  ADS  Google Scholar 

  22. P. Calvani, A. Paolone, P. Dore, S. Lupi, P. Maselli, P.G. Medaglia, Phys. Rev. B 54, R9592–R9595 (1996)

    Article  ADS  Google Scholar 

  23. H. Keller, A. Bussmann-Holder, K.A. Muller, Mater. Today 11, 38–46 (2008)

    Article  Google Scholar 

  24. A. Lanzara, N.L. Saini, M. Brunelli, F. Natali, A. Bianconi, Phys. Rev. L. 81, 4 (1998)

    Article  Google Scholar 

  25. L. Liu, S. Ren, J. Liu, F. Han, J. Zhang, B. Peng, D. Wang, A.A. Bokov, Z.G. Ye, Phys. Rev. B 99, 094110 (2019)

    Article  ADS  Google Scholar 

  26. J.H. Joshia, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull. 93, 63–73 (2017)

    Article  Google Scholar 

  27. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Cryst. Solids 45, 57 (1981)

    Article  ADS  Google Scholar 

  28. S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, J. Appl. Phys. 128, 064101 (2020)

    Article  ADS  Google Scholar 

  29. F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795 (1992)

    Article  ADS  Google Scholar 

  30. S. Karmakar, D. Behera, J. Phys.: Condens. Matter 31, 245701 (2019)

    ADS  Google Scholar 

  31. D.C. Sinclair, Bol. Soc. Esp. Cerem. Vidrio 34, 55–65 (1995)

    Google Scholar 

  32. S. Karmakar, B. Raviteja, C.D. Mistari, V. Parey, R. Thapa, M.A. More, D. Behera, J. Phys. Chem. Solids 142, 109462 (2020)

    Article  Google Scholar 

  33. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  34. A. Pelaiz-Barramco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998)

    Article  ADS  Google Scholar 

  35. A. Ghosh, S. Bhattacharya, A. Ghosh, J. Phys. Condens. Matter 20, 035203 (2008)

    Article  ADS  Google Scholar 

  36. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  37. A. Ghosh, Phys. Rev. B 41, 1479 (1990)

    Article  ADS  Google Scholar 

  38. S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42, 943–951 (2016)

    Article  Google Scholar 

  39. S.N. Tripathy, Z. Wojnarowska, J. Knapik, H. Shirota, R. Biswas, M. Paluch, J. Chem. Phys. 142, 184504 (2015)

    Article  ADS  Google Scholar 

  40. A.B. Hassen, F.I.H. Rhouma, M. Daoudi, J. Dhahri, M. Zaidi, N. Abdelmoula, RSC Adv. 9, 19285 (2019)

    Article  ADS  Google Scholar 

  41. W. Ni, B. Wang, J. Cheng, X. Li, Q. Guan, G. Gu, L. Huang, Nanoscale 6, 2618–2623 (2014)

    Article  ADS  Google Scholar 

  42. M. Anitha, K.D.A. Kumar, P. Mele, N. Anitha, K. Saravanakumar, M.A. Sayed, A.M. Ali, L. Amalraj, Coatings 11, 425 (2021)

    Article  Google Scholar 

  43. A.M. Pires, M.R. Davolos, C.O.P. Santos, E.B. Stucchi, J. Flor, J. Solid State Chem. 171, 420–423 (2003)

    Article  ADS  Google Scholar 

  44. M. Islam, P. Rajak, S. Bhattacharyya, Appl. Phys. A 125, 746 (2019)

    Article  ADS  Google Scholar 

  45. D.P. Dubal, P.G. Romero, B.R. Sankapal, R. Holze, Nano Energy 11, 377–399 (2015)

    Article  Google Scholar 

  46. B. Bahloul, L. Amirouche, Phys. Scr. 90, 115701 (2015)

    Article  ADS  Google Scholar 

  47. A. Rahdar, M. Aliahmad, Y. Azizi, JNS 5, 145–151 (2015)

    Google Scholar 

  48. H. Liu, J. Liu, RSC Adv. 6, 99158 (2016)

    Article  ADS  Google Scholar 

  49. B. Malecka, A. Lacz, Thermochim. Acta 479, 12–16 (2008)

    Article  Google Scholar 

  50. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  51. J. Shanker, M. Buchi Suresh, G. Narsinga Rao, D. Suresh Babu, J. Mater. Sci. 54, 5595–5604 (2019)

    Article  ADS  Google Scholar 

  52. G. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Article  Google Scholar 

  53. P.K. Bajpai, M. Pastor, K.N. Singh, J. Electron. Mater. 2014, 43 (2014)

    Google Scholar 

  54. S. Karmakar, H. Tyagi, D.P. Mohapatra, D. Behera, J. Alloys Compd. 851, 156789 (2021)

    Article  Google Scholar 

  55. S. Karmakar, V. Parey, C.D. Mistari, R. Thapa, M.A. More, D. Behera, J. Appl. Phys. 127, 034102 (2020)

    Article  ADS  Google Scholar 

  56. O. Farooq, A. Abdullah, M. Anis-ur-Rehman, Fatima-tuz Zahra, A. ul Haq, Mater. Res. Express 6, 1266 (2019)

  57. S. Lanfredi, G. Palacio, F. S. Bellucci, C.V. Colin, M.A.L. Nobre, J. Phys. D Appl. Phys. 45, 435302 (2012).

  58. V. Thakur, A. Singh, A. M. Awasthi, L. Singh, AIP Adv. 5, 087110 (2015).

  59. S. Gowreesan, A.R. Kumar, Appl. Phys. A 123, 689 (2017)

    Article  Google Scholar 

  60. B. Bechera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43, 401 (2008)

    Article  Google Scholar 

  61. B.B. Dash, S. Ravi, Solid State Sci. 83, 192 (2018)

    Article  ADS  Google Scholar 

  62. R. Ahmed, S. Wang, S. ur Rehman, J. Sun, J. Wang, R. Si, A. Zhu, Y. Yu, Q. Li, C. Wang, Eng. Sci. 15 95–104 (2021).

  63. R. Ahmed, J. Wang, R.J. Si, S. ur Rehman, T. Li, H. Bi, Y. Yu, Q.J. Li, Y. D. Li, S.G. Huang, Y.M. Guo, C.C. Wang, J. Eur. Ceram. Soc. 41, 2625–2632 (2021)

  64. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)

    Article  Google Scholar 

  65. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  ADS  Google Scholar 

  66. L.L. Anderson, D.A. Stuart, J. Am. Ceram. Soc. 37, 573 (1954)

    Article  Google Scholar 

  67. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287–337 (1985)

    Article  ADS  Google Scholar 

  68. D.C. Licciardello, Sol. Celss. 02, 191 (1980)

    Article  Google Scholar 

  69. Q. Hou, J. Buckeridge, T. Lazauskas, D.M. Fonz, A.A. Sokol, S.M. Woodley, C. Richard, A. Catlow, J. Mater. Chem. C 6, 12386 (2018)

    Article  Google Scholar 

  70. D. Ihrig, H. Hennings, Phys. Rev. B 17, 4593 (1978)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author S. Karmakar would like to acknowledge Human Resource Development (MHRD), Govt. of India, for his senior research fellowship grant. He would also like to thank his laboratory mates for their continuous support and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karmakar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Mohanty, H.S. & Behera, D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur. Phys. J. Plus 136, 1038 (2021). https://doi.org/10.1140/epjp/s13360-021-01998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01998-5

Navigation