Skip to main content
Log in

Effects of theoretical models on the production cross-section calculations of some non-standard positron emitters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Theoretical studies and their outcomes, such as cross-section data, become more valuable in the cases where the experimental studies are not possible to take place. In this study, by considering the importance of the medical radioisotopes, especially the positron emitters, and the benefit of theoretical calculation results, production cross sections of 61Cu, 66Ga, 72As, 73Se, and 76Br non-standard positron emitters via alpha-induced reactions were examined by utilizing level density models and alpha optical model potentials. In accordance with the aims of the study, all calculations were done by using a computation code TALYS v1.9, for the available six level density models and the eight alpha optical model potentials from the code. To investigate the consistency of the calculation results with the available experimental data, taken from the Experimental Nuclear Reaction Data (EXFOR) Library, a mean-weighted deviation analysis was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The experimental data in this study were taken from the Experimental Nuclear Reaction Data (EXFOR) library of the International Network of Nuclear Reaction Data Centers (NRDC). (DOI: https://doi.org/10.1016/j.nds.2014.07.065).]

References

  1. H. Özdoğan, Theoretical calculations of production cross-sections for the 201Pb, 111In 18F and 11C radioisotopes at proton induced reactions. Appl. Radiat. Isot. 143, 1–5 (2019)

    Article  Google Scholar 

  2. T.E. Boothe, T.F. McLeod, M. Plitnikas, D. Kinney, E. Tavano, Y. Feijoo, P. Smith, F. Szelecsényi, Commercial and PET radioisotope manufacturing with a medical cyclotron. Nucl. Instrum. Methods Phys. Res. B 79, 926–928 (1993)

    Article  ADS  Google Scholar 

  3. H. Özdoğan, M. Şekerci, A. Kaplan, Investigation of gamma strength functions and level density models effects on photon induced reaction cross-section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu. Appl. Radiat. Isot. 143, 6–10 (2019)

    Article  Google Scholar 

  4. S.M. Qaim, The present and future of medical radionuclide production. Radiochim. Acta 100, 635–651 (2012)

    Article  Google Scholar 

  5. S.M. Qaim, I. Spahn, B. Scholten, B. Neumaier, Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim. Acta 104(9), 601–624 (2016)

    Article  Google Scholar 

  6. Qaim SM, Tárkányi F, Capote R (Eds), Nuclear Data for the production of the therapeutic radionuclides, Technical Reports Series No. 473(IAEA, Vienna, 2011), pp. 1–377

  7. S.M. Qaim, Therapeutic radionuclides and nuclear data. Radiochim. Acta 89, 297–304 (2001)

    Article  Google Scholar 

  8. S.M. Qaim, Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 44, 31–49 (2017)

    Article  Google Scholar 

  9. M. Şekerci, H. Özdoğan, A. Kaplan, Investigation on the different production routes of 67Ga radioisotope by using different level density models. Mosc. Univ. Phys. Bull. 74, 277–281 (2019)

    Article  ADS  Google Scholar 

  10. G. Stöcklin, S.M. Qaim, F. Rösch, The impact of radioactivity on medicine metallic. Radiochim. Acta 70–71, 249–272 (1995)

    Article  Google Scholar 

  11. M.A. Synowiecki, L.R. Perk, J.F.W. Nijsen, Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm. Chem. 3, 3 (2018)

    Article  Google Scholar 

  12. F. Szelecsényi, G.F. Steyn, Z. Kovács, T.N. van der Walt, K. Suzuki, Comments on the feasibility of 61Cu production by proton irradiation of natZn on a medical cyclotron. Appl. Radiat. Isotopes 64, 789–791 (2006)

    Article  Google Scholar 

  13. F. Tárkányi, S. Takács, B. Király, F. Szelecsényi, L. Andó, J. Bergman, S.-J. Heselius, O. Solin, A. Hermanne, Y.N. Shubin, A.V. Ignatyuk, Excitation functions of 3He- and α-particle induced nuclear reactions on natSb for production of medically relevant 123I and 124I radioisotopes. Appl. Radiat. Isot. 67, 1001–1006 (2009)

    Article  Google Scholar 

  14. A. Aydin, H. Pekdogan, A. Kaplan, İH. Sarpün, E. Tel, B. Demir, Comparison of level density models for the 60,61,62,64Ni(p, n) reactions of structural fusion material nickel from threshold to 30 MeV. J. Fusion Energy 34, 1105–1108 (2015)

    Article  Google Scholar 

  15. A. Aydin, H. Pekdoğan, E. Tel, A. Kaplan, Nuclear model calculations on the production of 125,123Xe and 133,131,129,128Ba radioisotopes. Phys. Atomic Nucl. 75, 310–314 (2012)

    Article  ADS  Google Scholar 

  16. A. Aydin, I.H. Sarpün, A. Kaplan, E. Tel, Calculations of double–differential deuteron emission cross sections at 62 MeV proton induced reactions. J. Fusion Energy 32, 378–381 (2013)

    Article  ADS  Google Scholar 

  17. A. Aydin, E. Tel, A. Kaplan, Calculation of 14–15 MeV (n, d) reaction cross sections using newly evaluated empirical and semi-empirical systematics. J. Fusion Energy 27, 308–313 (2008)

    Article  ADS  Google Scholar 

  18. A. Kaplan, H. Özdoğan, A. Aydin, E. Tel, Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for (g, n) reaction. Phys. Atomic Nucl. 77, 1371–1377 (2014)

    Article  ADS  Google Scholar 

  19. S. Parashari, S. Mukherjee, V. Vansola, R. Makwana, N.L. Singh, B. Pandey, Investigation of (n, p), (n,2n) reaction cross sections for Sn isotopes for fusion reactor applications. Appl. Radiat. Isot. 133, 31–37 (2018)

    Article  Google Scholar 

  20. M. Sharifian, M. Sadeghi, M. Alimohamadi, Calculation of 89Y(p, x)86,88,89gZr, 86g,87g,88gY, 85gSr, and 84Rb reaction cross sections based on level density. Appl. Radiat. Isot. 151, 25–29 (2019)

    Article  Google Scholar 

  21. M. Yiğit, A new study on pre-equilibrium and equilibrium effects of excitation functions of alpha-induced reactions on 51V, 55Mn and 59Co nuclei. Appl. Radiat. Isotopes 148, 108–113 (2019)

    Article  Google Scholar 

  22. S.M. Qaim, B. Scholten, I. Spahn, B. Neumaier, Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochim Acta 107, 1011–1026 (2019)

    Article  Google Scholar 

  23. S.M. Qaim, T. Bisinger, K. Hilgers, D. Nayak, H.H. Coenen, Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim. Acta 95, 67–73 (2007)

    Article  Google Scholar 

  24. NuDat (Nuclear Structure and Decay Data) (2021). Available Online: April 29th, 2021, https://www.nndc.bnl.gov/nudat2/index.jsp

  25. Koning A, Hilaire S, Goriely S, TALYS-1.9 A nuclear reaction program, User Manual (2017) https://tendl.web.psi.ch/tendl_2019/talys.html

  26. N. Kurenkov, V. Lunev, Y. Shubin, Evaluation of calculation methods for excitation functions for production of radioisotopes of iodine, thallium and other elements. Appl. Radiat. Isot. 50, 541 (1999)

    Article  Google Scholar 

  27. V.V. Zerkin, B. Pritychenko, The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system. Nucl. Instrum. Methods Phys. Res. Sect. A 888, 31–43 (2018)

    Article  ADS  Google Scholar 

  28. E. Fermi, Zur quantelung des idealen einatomigen gases. Z. Phys. 36, 902–912 (1926)

    Article  ADS  MATH  Google Scholar 

  29. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43(8), 1446–1496 (1965)

    Article  ADS  Google Scholar 

  30. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Role of the collective effects in a systematics of nuclear level density. Yad. Fiz. 29(4), 875–883 (1979)

    Google Scholar 

  31. H. Baba, A shell-model nuclear level density. Nucl. Phys. A. 159(2), 625–641 (1970)

    Article  ADS  Google Scholar 

  32. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nucl. Phys. A 217(2), 269–298 (1973)

    Article  ADS  Google Scholar 

  33. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Phenomenological description of energy dependence of the level density parameter. Yad. Fiz. 21(3), 485–490 (1975)

    Google Scholar 

  34. A.J. Koning, S. Hilaire, S. Goriely, Global and local level density models. Nucl. Phys. A 810, 13–76 (2008)

    Article  ADS  Google Scholar 

  35. S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  36. S. Hilaire, S. Goriely, Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nucl. Phys. A 779, 63–81 (2006)

    Article  ADS  Google Scholar 

  37. S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012)

    Article  ADS  Google Scholar 

  38. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A. 713, 231–310 (2003)

    Article  ADS  Google Scholar 

  39. S. Watanabe, High energy scattering of deuterons by complex nuclei. Nucl. Phys. 8, 484–492 (1958)

    Article  Google Scholar 

  40. L. McFadden, G.R. Satchler, Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nucl. Phys. 84, 177–200 (1966)

    Article  Google Scholar 

  41. P. Demetriou, C. Grama, S. Goriely, Improved global α-optical model potentials at low energies. Nucl. Phys. A. 707, 253–276 (2002)

    Article  ADS  Google Scholar 

  42. M. Nolte, H. Machner, J. Bojowald, Global optical potential for α particles with energies above 80 MeV. Phys. Rev. C. 36, 1312 (1987)

    Article  ADS  Google Scholar 

  43. V. Avrigeanu, P.E. Hodgson, M. Avrigeanu, Global optical potentials for emitted alpha particles. Phys. Rev. C. 49, 2136 (1994)

    Article  ADS  MATH  Google Scholar 

  44. V. Avrigeanu, M. Avrigeanu, C. Mănăilescu, Further explorations of the α-particle optical model potential at low energies for the mass range A≈45–209. Phys. Rev. C. 90, 044612 (2014)

    Article  ADS  Google Scholar 

  45. H. Özdoğan, M. Şekerci, I.H. Sarpün, A. Kaplan, Investigation of level density parameter effects on (p, n) and (p,2n) reaction cross-sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Appl. Radiat. Isot. 140, 29–34 (2018)

    Article  Google Scholar 

  46. A. Colombi, M.P. Carante, F. Barbaro, L. Canton, A. Fontana, Production of high-purity 52gMn from natV targets with alpha beams at cyclotrons. Nucl Technol (2021). https://doi.org/10.1080/00295450.2021.1947122

    Article  Google Scholar 

  47. M.A. Ansari, M.A. Abd Alslam, N.P.M. Sathik, M. Ismail, M.H. Rashid, Excitation functions of α-induced reactions in cobalt and pre-equilibrium effects. Int. J. Mod. Phys. E 13, 585–595 (2004)

    Article  ADS  Google Scholar 

  48. F. Szelecsényi, K. Suzuki, Z. Kovács, M. Takei, K. Okada, Production possibility of radioisotopes by alpha induced reactions on cobalt for PET studies. Nucl. Instrum. Methods Phys. Res. B 187, 153–163 (2002)

    Article  ADS  Google Scholar 

  49. N.L. Singh, S. Agarwal, J.R. Rao, Excitation function for α-particle-induced reactions in light-mass nuclei. Can. J. Phys. 71, 115–121 (1993)

    Article  ADS  Google Scholar 

  50. V.N. Levkovski, Act.Cs. by protons and alphas, cross-sections of medium mass nuclide activation (A = 40–100) by medium energy protons and alpha-particles (E = 10–50 MeV). Inter-Vesi, Moscow (1991)

  51. E. Gadioli, E. Gadioli Erba, J. Asher, D.J. Parker, Analysis of 59Co (α, x p y n z α) reactions up to 170 MeV incident α energy. Z. Phys. A 317, 155–168 (1984)

    Article  ADS  Google Scholar 

  52. V.A. Didik, RSh. Malkovich, E.A. Skoryatina, V.V. Kozlovskii, Experimental determination of the cross sections of nuclear reactions by the method of analysis of the concentration profiles of transmutation nuclides. At. Energ. 77, 81 (1994)

    Google Scholar 

  53. J. Zweit, H. Sharma, S. Downey, Production of gallium-66, a short-lived, positron emitting radionuclide. Int. J. Radiat. Appl. Instrum. Appl. Radiat. Isot. 38, 499–501 (1987)

    Article  Google Scholar 

  54. Zhukova, O. A., Kanashevich, V. I., Laptev, S. V., Chursin, G. P., 1970. Excitation functions of reactions induced by alpha particles with maximum energy of 38 MeV on copper isotopes. Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat., No. 4, 1-8

  55. E.A. Bryant, D.R.F. Cochran, J.D. Knight, Excitation functions of reactions of 7- to 24- MeV He3 ions with Cu63 and Cu65. Phys. Rev. 130, 1512–1522 (1963)

    Article  ADS  Google Scholar 

  56. H.D. Bhardwaj, A.K. Gautam, R. Prasad, Measurement and analysis of excitation functions for alpha-induced reactions in copper. Pramana J. Phys 31, 109–123 (1988)

    Article  ADS  Google Scholar 

  57. M. Ismail, Measurement and analysis of the excitation function for alpha-induced reactions on Ga and Sb isotopes. Phys. Rev. C 41, 87–108 (1990)

    Article  ADS  Google Scholar 

  58. I.A. Rizvi, M.K. Bhardwaj, M.A. Ansari, A.K. Chaubey, Nonequilibrium effects in α-particle induced reactions on gallium isotopes. Can. J. Phys. 67, 870–875 (1989)

    Article  ADS  Google Scholar 

  59. K. Breunig, I. Spahn, A. Hermanne, S. Spellerberg, B. Scholten, H.H. Coenen, Cross section measurements of 75As(α, xn)76,77,78Br and 75As(α, x)74As nuclear reactions using the monitor radionuclides 67Ga and 66Ga for beam evaluation. Radiochim. Acta 105, 431–439 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Şekerci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şekerci, M. Effects of theoretical models on the production cross-section calculations of some non-standard positron emitters. Eur. Phys. J. Plus 136, 1021 (2021). https://doi.org/10.1140/epjp/s13360-021-01995-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01995-8

Navigation