Skip to main content
Log in

A new focus on the role of iron oxide in enhancing the structure and shielding properties of Ag2O–P2O5 glasses

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Fast quenching was used to create glasses in the xFe2O3·(40x)Ag2O·60P2O5 system (0 ≤ x ≤ 20 mol%). Fourier transform infrared spectrum (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to investigate the structure of the glasses. A gradual increase in Fe2O3 content leads to an increase in P–O–Fe bonds, which increases the durability of the glass structure. The Hardness number (Hv) of the investigated glasses increases with increasing Fe2O3 content. The measured density decreases, and the calculated molar volume increases with increasing iron oxide concentrations. The mass attenuation coefficient was calculated using the WinXCOM program after being measured experimentally. The experimental and theoretical values are in good agreement. The gamma-ray shielding parameter HVL was calculated to understand the radiation shielding performances of the investigated glasses. The results show that as the Fe2O3 content increases, the mass attenuation coefficient (μm) decreases. The glass with the lowest HVL values contains 5 mol% Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, L.H. Cao, B. Dai, Raman and FTIR spectra of iron phosphate glasses containing cerium. J. Mol. Struct. 992(1–3), 84–88 (2011)

    Article  ADS  Google Scholar 

  2. C.W. Kim, C.S. Ray, D. Zhu, D.E. Day, D. Gombert, A. Aloy, A. Moguš-Milanković, M. Karabulut, Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques. J. Nucl. Mater. 322(2–3), 152–164 (2003)

    Article  ADS  Google Scholar 

  3. M. El-Desoky, A. Al-Shahrani, Mixed electronic–ionic conductivity in semiconducting CaO–PbO–Fe2O3–P2O5 glasses. Physica B 371(1), 95–99 (2006)

    Article  ADS  Google Scholar 

  4. Q. Shi, Y. Yue, Y. Qu, S. Liu, G.A. Khater, L. Zhang, J. Zhao, J. Kang, Structure and chemical durability of calcium iron phosphate glasses doped with La2O3 and CeO2. J. Non-Cryst. Solids 516, 50–55 (2019)

    Article  ADS  Google Scholar 

  5. K.B. Richard, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 263, 1–28 (2000)

    Google Scholar 

  6. G. El Damrawi, A. Hassan, A. Shahboub, Chemical durability and structure of Al2O3–Ag2O–P2O5 glasses. Appl. Phys. A 126(4), 1–7 (2020)

    Article  Google Scholar 

  7. M. Laourayed, M. El Moudane, M. Khachani, M. Boudalia, A. Guenbour, A. Bellaouchou, M. Tabyaoui, Effect of the Bi2O3 on the thermal, structural and chemical durability of some bismuth niobium phosphate glasses. Mater. Today: Proc. 13, 974–981 (2019)

    Google Scholar 

  8. B. Sales, L. Boatner, Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste. Science 226(4670), 45–48 (1984)

    Article  ADS  Google Scholar 

  9. S. Azianty, A. Yahya, M. Halimah, Effects of Fe2O3 replacement of ZnO on elastic and structural properties of 80TeO2–(20–x) ZnO–x Fe2O3 tellurite glass system. J. Non-Cryst. Solids 358(12–13), 1562–1568 (2012)

    Article  ADS  Google Scholar 

  10. D. Rusu, I. Ardelean, Structural studies of Fe2O3–Bi2O3–CdO glass system. Mater. Res. Bull. 43(7), 1724–1730 (2008)

    Article  Google Scholar 

  11. A. Ghosh, Memory switching in bismuth-vanadate glasses. J. Appl. Phys. 64(5), 2652–2655 (1988)

    Article  ADS  Google Scholar 

  12. A. El-Taher, A.M. Ali, Y.B. Saddeek, R. Elsaman, H. Algarni, K. Shaaban, T.Z. Amer, Gamma ray shielding and structural properties of iron alkali alumino-phosphate glasses modified by PbO. Radiat. Phys. Chem. 165, 108403 (2019)

    Article  Google Scholar 

  13. C.W. Kim, D.E. Day, Immobilization of Hanford LAW in iron phosphate glasses. J. Non-Cryst. Solids 331(1–3), 20–31 (2003)

    Article  ADS  Google Scholar 

  14. S. Reis, M. Karabulut, D. Day, Chemical durability and structure of zinc–iron phosphate glasses. J. Non-Cryst. Solids 292(1–3), 150–157 (2001)

    Article  ADS  Google Scholar 

  15. M. Karabulut, G.K. Marasinghe, C.S. Ray, D.E. Day, O. Ozturk, G.D. Waddill, X-ray photoelectron and Mössbauer spectroscopic studies of iron phosphate glasses containing U, Cs and Bi. J. Non-Cryst. Solids 249(2–3), 106–116 (1999)

    Article  ADS  Google Scholar 

  16. Y. Elmahroug, B. Tellili, C. Souga, Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Ann. Nucl. Energy 75, 268–274 (2015)

    Article  Google Scholar 

  17. S.M. Hsu, S.W. Yung, R.K. Brow, W.L. Hsu, C.C. Lu, F.B. Wu, S.H. Ching, Effect of silver concentration on the silver-activated phosphate glass. Mater. Chem. Phys. 123(1), 172–176 (2010)

    Article  ADS  Google Scholar 

  18. I.O. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys. Scr. 96(6), 065308 (2021)

    Article  ADS  Google Scholar 

  19. Y. Miyamoto, Y. Takei, H. Nanto, T. Kurobori, A. Konnai, T. Yanagida, A. Yoshikawa, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, Radiophotoluminescence from silver-doped phosphate glass. Radiat. Meas. 46(12), 1480–1483 (2011)

    Article  Google Scholar 

  20. M. Sayyed, M. Rashad, Y. Rammah, Impact of Ag2O on linear, nonlinear optical and gamma-ray shielding features of ternary silver vanadio-tellurite glasses: TeO2–V2O5–Ag2O. Ceram. Int. 46(14), 22964–22972 (2020)

    Article  Google Scholar 

  21. U. Hoppe, G. Walter, A. Barz, D. Stachel, A.C. Hannon, The PO bond lengths in vitreous probed by neutron diffraction with high real-space resolution. J. Phys.: Condens. Matter 10(2), 261 (1998)

    ADS  Google Scholar 

  22. G. El-Damrawi, A. Hassan, H. Doweidar, A. Shaboub, Structural studies on Ag2O-P2O5 glasses. New J. Glass Ceram. 7(03), 77 (2017)

    Article  Google Scholar 

  23. D.E. Day, Z. Wu, C.S. Ray, P. Hrma, Chemically durable iron phosphate glass waste forms. J. Non-Cryst. Solids 241(1), 1–2 (1998)

    Article  ADS  Google Scholar 

  24. B.C. Sales, M.M. Abraham, J.B. Bates, L.A. Boatner, Structural properties of lead-iron phosphate glasses. J. Non-Cryst. Solids 71(1–3), 103–112 (1985)

    Article  ADS  Google Scholar 

  25. S.V. Stefanovsky, O.I. Stefanovsky, M.I. Kadyko, I.A. Presniakov, B.F. Myasoedov, The effect of Fe2O3 substitution for Al2O3 on the phase composition and structure of sodium–aluminum–iron phosphate glasses. J. Non-Cryst. Solids 425, 138–145 (2015)

    Article  ADS  Google Scholar 

  26. G.K. Marasinghe, M. Karabulut, C.S. Ray, D.E. Day, D.K. Shuh, P.G. Allen, M.L. Saboungi, M. Grimsditch, D. Haeffner, Properties and structure of vitrified iron phosphate nuclear wasteforms. J. Non-Cryst. Solids 263, 146–154 (2000)

    Article  ADS  Google Scholar 

  27. C.S. Ray, X. Fang, M. Karabulut, G.K. Marasinghe, D.E. Day, Effect of melting temperature and time on iron valence and crystallization of iron phosphate glasses. J. Non-Cryst. Solids 249(1), 1–16 (1999)

    Article  ADS  Google Scholar 

  28. J.S. Alzahrani, M.A. Alothman, C. Eke, H. Al-Ghamdi, D.A. Aloraini, M.S. Al-Buriahi, Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput. Mater. Sci. 196, 110566 (2021)

    Article  Google Scholar 

  29. I. Kebaili, S. Znaidia, J.S. Alzahrani, M.A. Alothman, I. Boukhris, I.O. Olarinoye, C. Mutuwong, M.S. Al-Buriahi, Ge20Se80-xBix (x≤ 12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects. J. Mater. Sci.: Mater. Electron. 32, 15509–15522 (2021)

    Google Scholar 

  30. D.F. Jackson, D.J. Hawkes, X-ray attenuation coefficients of elements and mixtures. Phys. Rep. 70(3), 169–233 (1981)

    Article  ADS  Google Scholar 

  31. L. Gerward, N. Guilbert, K.B. Jensen, H. Leving, WinXCom–a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)

    Article  ADS  Google Scholar 

  32. Y. Moustafa, K. El-Egili, Infrared spectra of sodium phosphate glasses. J. Non-Cryst. Solids 240(1–3), 144–153 (1998)

    Article  ADS  Google Scholar 

  33. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33(11), 1269–1290 (1982)

    Article  Google Scholar 

  34. C. Dayanand, G. Bhikshamaiah, V.J. Tyagaraju, M. Salagram, A.K. Murthy, Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1–x) P2O5 vitreous system. J. Mater. Sci. 31(8), 1945–1967 (1996)

    Article  ADS  Google Scholar 

  35. K. El-Egili, H. Doweidar, Y.M. Moustafa, I. Abbas, Structure and some physical properties of PbO–P2O5 glasses. Physica B 339(4), 237–245 (2003)

    Article  ADS  Google Scholar 

  36. A.M. Efimov, IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO· P2O5–2Me2O· P2O5 join (Me being Na and Li). J. Non-Cryst. Solids 209(3), 209–226 (1997)

    Article  ADS  Google Scholar 

  37. N. Vedeanu, D. Magdas, R. Stefan, Structural modifications induced by addition of copper oxide to lead–phosphate glasses. J. Non-Cryst. Solids 358(23), 3170–3174 (2012)

    Article  ADS  Google Scholar 

  38. J.P. Malugani, R. Mercier, Vibrational properties of and short range order in superionic glasses AgPO3–AgX (X = I, Br, Cl). Solid State Ionics 13(4), 293–299 (1984)

    Article  Google Scholar 

  39. M.H. Misbah, H. Doweidar, K. El-Egili, G. El-Damrawi, M. El-Kemary, Structure and some properties of xBaO· (50–x) PbO· 50P2O5 glasses. J. Non-Cryst. Solids 534, 119945 (2020)

    Article  Google Scholar 

  40. E.L. Kamitsos, J.A. Kapoutsis, G.D. Chryssikos, J.M. Hutchinson, A.J. Pappin, Infrared study of AgI containing superionic glasses. Phys. Chem. Glasses 36(3), 141–149 (1995)

    Google Scholar 

  41. D. Corbridge, E. Lowe, The infra-red spectra of some inorganic phosphorus compounds. J. Chem. Soc. (Resumed) (1954). https://doi.org/10.1039/JR9540000493

    Article  Google Scholar 

  42. H. Liu, T. Chin, S. Yung, FTIR and XPS studies of low-melting PbO-ZnO-P2O2 glasses. Mater. Chem. Phys. 50(1), 1–10 (1997)

    Article  ADS  Google Scholar 

  43. M. Abid, M. Et-Tabirou, M. Taibi, Structure and DC conductivity of lead sodium ultraphosphate glasses. Mater. Sci. Eng. B 97(1), 20–24 (2003)

    Article  Google Scholar 

  44. J.O. Byun, B.H. Kim, K.S. Hong, H.J. Jung, S.W. Lee, A.A. Izyneev, Properties and structure of RO–Na2O–Al2O3–P2O5 (R = Mg, Ca, Sr, Ba) glasses. J. Non-Cryst. Solids 190(3), 288–295 (1995)

    Article  ADS  Google Scholar 

  45. S.T. Reis, A. Moguš-Milanković, V. Ličina, J.B. Yang, M. Karabulut, D.E. Day, R.K. Brow, Iron redox equilibrium, structure and properties of zinc iron phosphate glasses. J. Non-Cryst. Solids 353(2), 151–158 (2007)

    Article  ADS  Google Scholar 

  46. D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, Y. Dimitriev, Infrared and Raman spectra of Ga2O3–P2O5 glasses. J. Non-Cryst. Solids 283(1–3), 195–202 (2001)

    Article  ADS  Google Scholar 

  47. Y.M. Moustafa, K. El-Egili, H. Doweidar, I. Abbas, Structure and electric conduction of Fe2O3–P2O5 glasses. Physica B 353(1–2), 82–91 (2004)

    Article  ADS  Google Scholar 

  48. G. El-Damrawi, A. Hassan, A. Shahboub, 31P and 27Al nuclear magnetic resonance studies on silver phosphate glasses. Magn. Resonance Solids 20(2), 1–10 (2018)

    Google Scholar 

  49. D. Toloman, A.R. Biris, D. Maniu, I. Bratu, L.M. Giurgiu, A.S. Biris, I. Ardelean, Phosphate glassy network depolymerization induced by CaO doping. Part. Sci. Technol. 28(3), 226–235 (2010)

    Article  Google Scholar 

  50. M. Lu, F. Wang, Q. Liao, K. Chen, J. Qin, S. Pan, FTIR spectra and thermal properties of TiO2-doped iron phosphate glasses. J. Mol. Struct. 1081, 187–192 (2015)

    Article  ADS  Google Scholar 

  51. Y. Lai, X. Liang, G. Yin, S. Yang, J. Wang, H. Zhu, H. Yu, Infrared spectra of iron phosphate glasses with gadolinium oxide. J. Mol. Struct. 1004(1–3), 188–192 (2011)

    Article  ADS  Google Scholar 

  52. H. Doweidar, Y.M. Moustafa, K. El-Egili, I. Abbas, Infrared spectra of Fe2O3–PbO–P2O5 glasses. Vib. Spectrosc. 37(1), 91–96 (2005)

    Article  Google Scholar 

  53. P. Bergo, S.T. Reis, W.M. Pontuschka, J.M. Prison, C.C. Motta, Dielectric properties and structural features of barium-iron phosphate glasses. J. Non-Cryst. Solids 336(3), 159–164 (2004)

    Article  ADS  Google Scholar 

  54. K. Joseph, K.G. Kutty, P. Chandramohan, P.V. Rao, Studies on the synthesis and characterization of cesium-containing iron phosphate glasses. J. Nucl. Mater. 384(3), 262–267 (2009)

    Article  ADS  Google Scholar 

  55. P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, E. Burkel, Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations. Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014)

    Article  Google Scholar 

  56. T. Okura, T. Miyachi, H. Monma, Properties and vibrational spectra of magnesium phosphate glasses for nuclear waste immobilization. J. Eur. Ceram. Soc. 26(4–5), 831–836 (2006)

    Article  Google Scholar 

  57. J.E. Pemberton, L. Latifzadeh, J.P. Fletcher, S.H. Risbud, Raman spectroscopy of calcium phosphate glasses with varying calcium oxide modifier concentrations. Chem. Mater. 3(1), 195–200 (1991)

    Article  Google Scholar 

  58. X. Yu, D.E. Day, G.J. Long, R.K. Brow, Properties and structure of sodium-iron phosphate glasses. J. Non-Cryst. Solids 215(1), 21–31 (1997)

    Article  ADS  Google Scholar 

  59. P.Y. Shih, Properties and FTIR spectra of lead phosphate glasses for nuclear waste immobilization. Mater. Chem. Phys. 80(1), 299–304 (2003)

    Article  Google Scholar 

  60. R.K. Brow, D.R. Tallant, S.T. Myers, C.C. Phifer, The short-range structure of zinc polyphosphate glass. J. Non-Cryst. Solids 191(1–2), 45–55 (1995)

    Article  ADS  Google Scholar 

  61. X. Liang, H. Li, C. Wang, H. Yu, Z. Li, S. Yang, Physical and structural properties of calcium iron phosphate glass doped with rare earth. J. Non-Cryst. Solids 402, 135–140 (2014)

    Article  ADS  Google Scholar 

  62. M. Ganguli, K. Rao, Studies of ternary Li2SO4–Li2O–P2O5 glasses. J. Non-Cryst. Solids 243(2–3), 251–267 (1999)

    Article  ADS  Google Scholar 

  63. D.R. Lide, CRC Handbook of Chemistry and Physics, vol. 85 (CRC Press, Boca Raton, 2004)

    Google Scholar 

  64. W. Ahmina, M. El Moudane, A. Shaim, M. Zriouil, M. Taibi, Chemical durability, electrical and dielectric properties of the ternary system (50–x)K2O–xMnO–50P2O5 phosphate glasses. Mater. Today: Proc. 13, 466–473 (2019)

    Google Scholar 

  65. P. Shih, T. Chin, Effect of redox state of copper on the properties of P2O5–Na2O–CuO glasses. Mater. Chem. Phys. 60(1), 50–57 (1999)

    Article  Google Scholar 

  66. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. 46(11), 19078–19083 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shahboub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahboub, A., El Damrawi, G. & Saleh, A. A new focus on the role of iron oxide in enhancing the structure and shielding properties of Ag2O–P2O5 glasses. Eur. Phys. J. Plus 136, 947 (2021). https://doi.org/10.1140/epjp/s13360-021-01948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01948-1

Navigation