Skip to main content
Log in

3-micron wave band mid-infrared polarization-independent graphene modulator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A novel polarization-independent electro-absorption graphene modulator is proposed. Two layers of graphene structure are transferred on the inclined arsenic selenide and then covered with arsenic selenide to form a partially inclined graphene-arsenic selenide waveguide structure. According to the simulation results, TE and TM effective mode in the waveguide have almost the same change under different Graphene chemical potentials near the 3 μm wavelength. For the 100-μm-long waveguide structure, the extinction ratio (ER) of about 20 dB can be achieved through the selection of low absorption ("ON") and high absorption ("OFF") state points, and the gap between the two modes’ ER is less than 1.2 dB. The dependency of these two polarization states in "ON" state is lower than 0.112 dB, which indicates that the device can be used as polarization independent modulation. And combined with simulation calculations, the theoretical 3 dB modulation bandwidth (f3dB) of the proposed modulator reaches 43.5 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)

    Article  ADS  Google Scholar 

  3. M. Liu, X.B. Yin, E. Ulin-Avila, B.S. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  4. M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)

    Article  ADS  Google Scholar 

  5. C.T. Phare, Y.-H.D. Lee, J. Cardenas, M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511–514 (2015)

    Article  ADS  Google Scholar 

  6. F. Zhou, R. Hao, X.F. Jin, X.M. Zhang, E.P. Li, A graphene-enhanced fiber-optic phase modulator with large linear dynamic range. IEEE. Photonics Technol. Lett. 26, 2512–2515 (2014)

    ADS  Google Scholar 

  7. S.W. Ye, Z.H. Wang, L.F. Tang, Y. Zhang, R.G. Lu, Y. Liu, Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt. Exp. 22, 26173–26180 (2014)

    Article  ADS  Google Scholar 

  8. J. Gosciniak, D.T.H. Tan, Theoretical investigation of graphenebased photonic modulators. Sci. Rep. 3, 1 (2013)

    Google Scholar 

  9. S.J. Koester, M. Li, High-speed waveguide-coupled grapheneon-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012)

    Article  ADS  Google Scholar 

  10. R. Hao, W. Du, E.P. Li, H.S. Chen, Graphene assisted TE/TM independent polarizer based on Mach-Zehnder interferometer. IEEE Photon. Technol. Lett. 27, 1112–1115 (2015)

    Article  ADS  Google Scholar 

  11. Z.S. Chang, K.S. Chiang, Experimental verification of optical models of graphene with multimode slab waveguides. Opt. Lett. 41, 2129–2132 (2016)

    Article  ADS  Google Scholar 

  12. C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.E. Broquin, L. Labadie, Transmission measurement at 10.6 microns of Te2As3Se5 rib waveguides on As2S3 substrate. Appl. Phys. Lett. 90, 011110 (2007)

    Article  ADS  Google Scholar 

  13. C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J.E. Broquin, P. Kern, A. Pradel, Waveguides based on Te2As3Se5 thick films for spatial interferometry. J Non-cryst. Solids 352, 2416–2419 (2006)

    Article  ADS  Google Scholar 

  14. H. Zhong, Z.Y. Zhang, B.Y. Chen, H.T. Xu, D.M. Yu, L. Huang, L.M. Peng, Realization of low contact resistance close to theoretical limit in graphene transistors. Nano Res. 8, 1669–1679 (2015)

    Article  Google Scholar 

  15. G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 0643021–0643028 (2008)

    Article  Google Scholar 

  16. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  17. S. De, N.J. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010)

    Article  Google Scholar 

Download references

Funding

This work was funded by Program for International S&T Cooperation Projects of Sichuan Province (20GJHZ0266), National Key Research and Development Project (2018YFE0201901), National Nature Science Foundation of China (No. 61435010, 61307070, 61421002, 61704021) and the Fundamental Research Funds for the Central Universities (ZYGX2019J046).

Author information

Authors and Affiliations

Authors

Contributions

RL, XW, YL gave the idea and function realization form of the modulator. Liming Shen finished the simulation of this modulator and performance optimization, YW, SC, RL, JC, ZY, JL joined the building of this structure participated in the discussion of structure optimization.

Corresponding author

Correspondence to Rongguo Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Shen, L., Wang, Y. et al. 3-micron wave band mid-infrared polarization-independent graphene modulator. Eur. Phys. J. Plus 136, 862 (2021). https://doi.org/10.1140/epjp/s13360-021-01852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01852-8

Navigation