Skip to main content
Log in

Size-dependent buckling analysis of piezoelectric nanobeams resting on elastic foundation considering flexoelectricity effect using the stress-driven nonlocal model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Presented herein is a size-dependent Bernoulli–Euler beam model for the buckling analysis of piezoelectric nanobeams under electrical loading with the consideration of flexoelectricity influence. In order to capture size effects, the stress-driven model of nonlocal theory is utilized. Moreover, it is considered that the nanobeams are embedded in an elastic medium. According to a variational approach, the governing equations including nonlocal and flexoelectricity effects are obtained. Also, using the generalized differential quadrature technique, a numerical solution approach is proposed for calculating buckling loads of piezoelectric nanobeams with different boundary conditions. The effects of flexoelectricity, nanoscale and elastic foundation on the buckling behavior of nanobeams are studied through presenting some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.T. Thai, T.P. Vo, T.K. Nguyen, S.E. Kim, A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  2. M.A. Eltaher, M.E. Khater, S.A. Emam, A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)

    Article  MathSciNet  Google Scholar 

  3. M. Hosseini, A. Hadi, A. Malekshahi, M. Shishesaz, A review of size-dependent elasticity for nanostructures. JCAMECH 49, 197–211 (2018)

    Google Scholar 

  4. A.C. Eringen, D. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  5. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  6. H. Rouhi, R. Ansari, Nonlocal analytical Flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. NANO 7, 1250018 (2012)

    Article  Google Scholar 

  7. R. Ansari, H. Rouhi, S. Sahmani, Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)

    Article  Google Scholar 

  8. R. Ansari, A. Shahabodini, H. Rouhi, A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr. Appl. Phys. 15, 1062–1069 (2015)

    Article  ADS  Google Scholar 

  9. B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  10. N. Challamel, C. Wang, The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  11. P. Khodabakhshi, J.N. Reddy, A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)

    Article  MathSciNet  Google Scholar 

  12. M. Shaat, E. Ghavanloo, S.A. Fazelzadeh, Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech. Mater. 150, 103587 (2020)

    Article  Google Scholar 

  13. J. Fernández-Sáez, R. Zaera, J.A. Loya, J.N. Reddy, Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  MathSciNet  Google Scholar 

  14. A. Norouzzadeh, R. Ansari, H. Rouhi, Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)

    Article  ADS  Google Scholar 

  15. C.C. Koutsoumaris, K.G. Eptaimeros, G.J. Tsamasphyros, A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Article  Google Scholar 

  16. X. Zhu, L. Li, Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)

    Article  Google Scholar 

  17. G. Romano, R. Barretta, Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    Article  MathSciNet  Google Scholar 

  18. G. Romano, R. Barretta, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)

    Article  Google Scholar 

  19. G. Romano, R. Barretta, M. Diaco, F. Marotti de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  20. G. Romano, R. Luciano, R. Barretta, M. Diaco, Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum Mech. Thermodyn. 30, 641–655 (2018)

    Article  MathSciNet  Google Scholar 

  21. R. Barretta, R. Luciano, F. Marotti de Sciarra, G. Ruta, Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur. J. Mech. A Solids 72, 275–286 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Faraji Oskouie, R. Ansari, H. Rouhi, Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams. Eur. Phys. J. Plus 133, 336 (2018)

    Article  Google Scholar 

  23. M. Roghani, H. Rouhi, Nonlinear stress-driven nonlocal formulation of Timoshenko beams made of FGMs. Continuum Mech. Thermodyn. 33, 343–355 (2020). https://doi.org/10.1007/s00161-020-00906-z

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Barretta, F. Fabbrocino, R. Luciano, F. Marotti de Sciarra, G. Ruta, Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mech. Adv. Mater. Struct. 27, 869–875 (2020)

    Article  Google Scholar 

  25. P.L. Bian, H. Qing, C.F. Gao, One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: close form solution and consistent size effect. Appl. Math. Model. 89, 400–412 (2021)

    Article  MathSciNet  Google Scholar 

  26. G. Romano, R. Barretta, M. Diaco, Iterative methods for nonlocal elasticity problems. Continuum Mech. Thermodyn. 31, 669–689 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Tadi Beni, Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech. Res. Commun. 75, 67–80 (2016)

    Article  Google Scholar 

  28. Y.M. Yue, K.Y. Xu, T. Chen, A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Compos. Struct. 136, 278–286 (2016)

    Article  Google Scholar 

  29. F. Ebrahimi, M.R. Barati, Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. Eur. Phys. J. Plus 132, 19 (2017)

    Article  Google Scholar 

  30. D.P. Zhang, Y.J. Lei, S. Adhikari, Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta. Mech. 229, 2379–2392 (2018)

    Article  MathSciNet  Google Scholar 

  31. F. Ebrahimi, M.R. Barati, Magnetic field effects on buckling characteristics of smart flexoelectrically actuated piezoelectric nanobeams based on nonlocal and surface elasticity theories. Microsys. Technol. 24, 2147–2157 (2018)

    Article  Google Scholar 

  32. X. Zhao, S. Zheng, Z. Li, Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams. Thin-Walled Struct. 151, 106754 (2020)

    Article  Google Scholar 

  33. X. Zhuang, B.H. Nguyen, S.S. Nanthakumar, T.Q. Tran, N. Alajlan, T. Rabczuk, Computational modeling of flexoelectricity—A review. Energies 13, 1326 (2020)

    Article  Google Scholar 

  34. C. Shu, Differential Quadrature and Its Application in Engineering (Springer, 2000)

    Book  Google Scholar 

  35. F. Tornabene, 2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution. Compos. Struct. 93, 1854–1876 (2011)

    Article  Google Scholar 

  36. R. Ansari, M. Faraji Oskouie, R. Gholami, F. Sadeghi, Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory. Compos. Part B 89, 316–327 (2016)

    Article  Google Scholar 

  37. M. Bacciocchi, M. Eisenberger, N. Fantuzzi, F. Tornabene, E. Viola, Vibration analysis of variable thickness plates and shells by the generalized differential quadrature method. Compos. Struct. 156, 218–237 (2016)

    Article  Google Scholar 

  38. S. Brischetto, F. Tornabene, Advanced GDQ models and 3D stress recovery in multilayered plates, spherical and double-curved panels subjected to transverse shear loads. Compos. Part B 146, 244–269 (2018)

    Article  Google Scholar 

  39. M. Faraji Oskouie, R. Ansari, H. Rouhi, A numerical study on the buckling and vibration of nanobeams based on the strain- and stress-driven nonlocal integral models. Int. J. Comp. Mat. Sci. Eng. 07, 1850016 (2018)

    Article  Google Scholar 

  40. R. Barretta, A. Caporale, S.A. Faghidian, R. Luciano, F. Marotti de Sciarra, C.A. Medaglia, A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Compos. Part B 164, 590–598 (2019)

    Article  Google Scholar 

  41. R. Barretta, F. Fabbrocino, R. Luciano, F. Marotti de Sciarra, Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. PhysicaE 97, 13–30 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Nesarhosseini, S., Faraji Oskouie, M. et al. Size-dependent buckling analysis of piezoelectric nanobeams resting on elastic foundation considering flexoelectricity effect using the stress-driven nonlocal model. Eur. Phys. J. Plus 136, 876 (2021). https://doi.org/10.1140/epjp/s13360-021-01837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01837-7

Navigation