Skip to main content
Log in

Investigation of structure, mechanical, and shape memory behavior of thermally activated poly(ε-caprolactone): azide-functionalized poly(vinyl chloride) binary polymer blend films

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Like alloys in metallurgy, polymers are blended to obtain new characteristics, which is important to extend their application area. In this study, three different compositions of azide-functionalized poly(vinyl chloride)-PVC-N3 and poly(ε-caprolactone)-PCL were blended. Physical properties, such as mechanical and thermal behavior of the blends, were investigated through the tensile test, DSC, and TGA. Also, a blended polymer with equal participation of each constituent was trained to determine the shape memory behavior of the sample. The results showed that PVC-N3 and PCL were completely miscible; therefore, all physical properties are somewhere between the pure polymers. The blend with only 50% PCL, as an example, still kept its shape memory behavior; additionally, the blended polymers partially achieved crystalline behavior by adding PCL to the PVC-N3. The tensile test also showed that the modulus of toughness and other mechanical behavior depends on the compositional ratio of the polymers. Consequently, the miscibility of the PCL and PVC-N3 enhances the physical properties of both polymers as a function of composition.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Huang, B. Yang, L. An, C. Li, Y. Chan, Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86(11), 114105 (2005). https://doi.org/10.1063/1.1880448

    Article  ADS  Google Scholar 

  2. T. Xie, Tunable polymer multi-shape memory effect. Nature 464(7286), 267–270 (2010)

    Article  ADS  Google Scholar 

  3. C. Liu, H. Qin, P. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)

    Article  Google Scholar 

  4. A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers. Nature 434(7035), 879–882 (2005). https://doi.org/10.1038/nature03496

    Article  ADS  Google Scholar 

  5. H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3(2), 115–120 (2004)

    Article  ADS  Google Scholar 

  6. T. Chung, A. Romo-Uribe, P.T. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1), 184–192 (2008). https://doi.org/10.1021/ma071517z

    Article  ADS  Google Scholar 

  7. W. Li, Y. Liu, J. Leng, Triple-shape memory effect of polystyrene based polymer blends. J. Mater. Chem. A 3(48), 24532 (2015)

    Article  Google Scholar 

  8. J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37(12), 1720–1763 (2012)

    Article  Google Scholar 

  9. T. Xie, I.A. Rousseau, Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8), 1852–1856 (2009)

    Article  Google Scholar 

  10. Q. Meng, J. Hu, Y. Zhu, J. Lu, Y. Liu, Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Mater. Struct. 16(4), 1192 (2007)

    Article  ADS  Google Scholar 

  11. Q. Meng, J. Hu, L. Yeung, An electro-active shape memory fibre by incorporating multi-walled carbon nanotubes. Smart Mater. Struct. 16(3), 830 (2007)

    Article  ADS  Google Scholar 

  12. A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002)

    Article  ADS  Google Scholar 

  13. I.H. Paik, N.S. Goo, Y.C. Jung, J.W. Cho, Development and application of conducting shape memory polyurethane actuators. Smart Mater. Struct. 15(5), 1476–1482 (2006). https://doi.org/10.1088/0964-1726/15/5/037

    Article  ADS  Google Scholar 

  14. H. Jin Yoo, Y. Chae Jung, N. Gopal Sahoo, J. Whan Cho, Polyurethane-carbon nanotube nanocomposites prepared by in-situ polymerization with electroactive shape memory. J. Macromol. Sci. Part B 45(4), 441–451 (2006). https://doi.org/10.1080/00222340600767471

    Article  ADS  Google Scholar 

  15. D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke*. Lasers Surg. Med. 30(1), 1–11 (2002). https://doi.org/10.1002/lsm.10007

    Article  Google Scholar 

  16. W. Small Iv, T.S. Wilson, W.J. Benett, J.M. Loge, D.J. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13(20), 8204–8213 (2005). https://doi.org/10.1364/OPEX.13.008204

    Article  ADS  Google Scholar 

  17. R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, A. Lendlein, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. 103(10), 3540–3545 (2006)

    Article  ADS  Google Scholar 

  18. A.M. Schmidt, Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol. Rapid Commun. 27(14), 1168–1172 (2006). https://doi.org/10.1002/marc.200600225

    Article  Google Scholar 

  19. Y. Chae Jung, H. Hwa So, J. Whan Cho, Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J. Macromol. Sci. Part B 45(4), 453–546 (2006). https://doi.org/10.1080/00222340600767513

    Article  ADS  Google Scholar 

  20. M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10(4), 20–28 (2007). https://doi.org/10.1016/S1369-7021(07)70047-0

    Article  Google Scholar 

  21. H. Qin, P.T. Mather, Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42(1), 273–280 (2009). https://doi.org/10.1021/ma8022926

    Article  ADS  Google Scholar 

  22. E. Themistou, C.S. Patrickios, Synthesis and characterization of polymer networks and star polymers containing a novel, hydrolyzable acetal-based dimethacrylate cross-linker. Macromolecules 39(1), 73–80 (2006). https://doi.org/10.1021/ma0513416

    Article  ADS  Google Scholar 

  23. A.M. Abdelghany, M.S. Meikhail, N. Asker, Synthesis and structural-biological correlation of PVC\PVAc polymer blends. J. Market. Res. 8(5), 3908–3916 (2019). https://doi.org/10.1016/j.jmrt.2019.06.053

    Article  Google Scholar 

  24. W. Liu, R. Zhang, M. Huang, X. Dong, W. Xu, N. Ray, J. Zhu, Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104, 115–122 (2016). https://doi.org/10.1016/j.polymer.2016.09.079

    Article  Google Scholar 

  25. H. Haruna, M.E. Pekdemir, A. Tukur, M. Coşkun, Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. J. Therm. Anal. Calorim. 139(6), 3887–3895 (2020)

    Article  Google Scholar 

  26. V.H. Mareau, R.E. Prud’Homme, Growth rates and morphologies of miscible PCL/PVC blend thin and thick films. Macromolecules 36(3), 675–684 (2003)

    Article  ADS  Google Scholar 

  27. H.G. Kia, M.W. Verbrugge, T. Xie, I.A. Rousseau. Shape memory polymer containing composite materials. Google Patents; 2016.

  28. J. Thornton, Environmental Impacts of Polyvinyl Chloride (PVC) Building Materials (Healthy Building Network, Washington, DC, 2002)

    Google Scholar 

  29. N. Asan, T. Öztürk, Synthesis and characterization of poly(vinyl chloride–graft–ethylene glycol) graft copolymers by “click” chemistry. Hacettepe J. Biol. Chem. 45(1), 35–42 (2017)

    Google Scholar 

  30. Y. Zhang, R.-X. Zhuo, Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly(ethylene glycol) and polycaprolactone. Biomaterials 26(33), 6736–6742 (2005)

    Article  Google Scholar 

  31. W.J. Jia, Y.C. Gu, M.L. Gou, M. Dai, X.Y. Li, B. Kan, J.L. Yang, Q.F. Song, Y.Q. Wei, Z.Y. Qian, Preparation of biodegradable polycaprolactone/poly(ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug Deliv. 15(7), 409–416 (2008)

    Article  Google Scholar 

  32. C.G. Pitt, T.A. Marks, A. Schindler, Biodegradable Drug Delivery Systems Based on Aliphatic Polyesters: Application to Contraceptives and Narcotic Antagonists (Academic Press, New York, 1980)

    Google Scholar 

  33. Q. Xu, X. Ren, Y. Chang, J. Wang, L. Yu, K. Dean, Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide. J. Appl. Polym. Sci. 94(2), 593–597 (2004)

    Article  Google Scholar 

  34. M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217–1256 (2010)

    Article  Google Scholar 

  35. Q. Li, G. Li, S. Yu, Z. Zhang, F. Ma, Y. Feng, Ring-opening polymerization of ɛ-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process. Biochem. 46(1), 253–257 (2011)

    Article  Google Scholar 

  36. J.W. Peeters, O. van Leeuwen, A.R. Palmans, E. Meijer, Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: mechanistic considerations. Macromolecules 38(13), 5587–5592 (2005)

    Article  ADS  Google Scholar 

  37. Z. Pingping, Y. Haiyang, W. Shiqiang, Viscosity behavior of poly-ϵ-caprolactone (PCL)/poly(vinyl chloride)(PVC) blends in various solvents. Eur. Polymer J. 34(1), 91–94 (1998)

    Article  Google Scholar 

  38. R.M. Silverstein, G.C. Bassler, Spectrometric identification of organic compounds. J. Chem. Educ. 39(11), 546 (1962)

    Article  Google Scholar 

  39. M. Kok, K. Demirelli, Y. Aydogdu, Thermophysical properties of blend of poly(vinyl chloride) with poly(isobornyl acrylate). Int. J. Sci. Technol. 3(1), 37–42 (2008)

    Google Scholar 

  40. P. Parashar, K. Ramakrishna, A. Ramaprasad, A study on compatibility of polymer blends of polystyrene/poly(4-vinylpyridine). J. Appl. Polym. Sci. 120(3), 1729–1735 (2011)

    Article  Google Scholar 

  41. W. Brostow, R. Chiu, I.M. Kalogeras, A. Vassilikou-Dova, Prediction of glass transition temperatures: binary blends and copolymers. Mater. Lett. 62(17–18), 3152–3155 (2008)

    Article  Google Scholar 

  42. R. Godehardt, S. Rudolph, W. Lebek, S. Goerlitz, R. Adhikari, E. Allert, J. Giesemann, G. Michler, Morphology and micromechanical behavior of blends of ethene/1-hexene copolymers. J. Macromol. Sci. Phys. 38(5–6), 817–835 (1999)

    Article  ADS  Google Scholar 

  43. W.E. Baker, C.E. Scott, G.-H. Hu, M. Akkapeddi, Reactive Polymer Blending. Hanser Munich (2001).

  44. I. Sakurada, Polyvinyl Alcohol Fibers. International Fiber Science and Technology Series 6 (CRC Press, New York, 1985)

    Google Scholar 

  45. Y. Xu, Y. Xiong, S. Guo, Effect of liquid plasticizers on crystallization of PCL in soft PVC/PCL/plasticizer blends. J. Appl. Polym. Sci. 137(24), 48803 (2020)

    Article  Google Scholar 

  46. J. Feng, Z. Zhang, A. Bironeau, A. Guinault, G. Miquelard-Garnier, C. Sollogoub, A. Olah, E. Baer, Breakup behavior of nanolayers in polymeric multilayer systems—creation of nanosheets and nanodroplets. Polymer 143, 19–27 (2018)

    Article  Google Scholar 

  47. X.-G. Li, B.-G. Ma, L. Xu, Z.-W. Hu, X.-G. Wang, Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim. Acta 441(1), 79–83 (2006)

    Article  Google Scholar 

  48. R.M. Aghdam, S. Najarian, S. Shakhesi, S. Khanlari, K. Shaabani, S. Sharifi, Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. J. Appl. Polym. Sci. 124(1), 123–131 (2012)

    Article  Google Scholar 

  49. S.H. Ajili, N.G. Ebrahimi, M. Soleimani, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 5(5), 1519–1530 (2009)

    Article  Google Scholar 

  50. K. Gall, C.M. Yakacki, Y. Liu, R. Shandas, N. Willett, K.S. Anseth, Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res. Part A 73(3), 339–348 (2005)

    Article  Google Scholar 

  51. R. Xiao, J. Guo, T.D. Nguyen, Modeling the multiple shape memory effect and temperature memory effect in amorphous polymers. RSC Adv. 5(1), 416–423 (2015)

    Article  ADS  Google Scholar 

  52. H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50(6), 1596–1601 (2009). https://doi.org/10.1016/j.polymer.2009.01.011

    Article  Google Scholar 

  53. P. Mohammadi, M.S. Toivonen, O. Ikkala, W. Wagermaier, M.B. Linder, Aligning cellulose nanofibril dispersions for tougher fibers. Sci. Rep. 7(1), 11860 (2017). https://doi.org/10.1038/s41598-017-12107-x

    Article  ADS  Google Scholar 

  54. T. Niem, N. Youssef, B. Wöstmann, Energy dissipation capacities of CAD-CAM restorative materials: a comparative evaluation of resilience and toughness. J. Prosthet. Dent. 121(1), 101–109 (2019). https://doi.org/10.1016/j.prosdent.2018.05.003

    Article  Google Scholar 

  55. S. Gautam, A.K. Dinda, N.C. Mishra, Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater. Sci. Eng., C 33(3), 1228–1235 (2013)

    Article  Google Scholar 

  56. S.M. Martins-Franchetti, T. Egerton, J. White, Morphological changes in poly(caprolactone)/poly(vinyl chloride) blends caused by biodegradation. J. Polym. Environ. 18(1), 79–83 (2010)

    Article  Google Scholar 

  57. M. Amini, S. Wu, Designing a polymer blend nanocomposite with triple shape memory effects. Compos. Commun. 23, 100564 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Management Unit of the Scientific Research Projects of Firat University (FUBAP) (Project Numbers: FF.20.14 and FF.20.06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ersin Pekdemir.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekdemir, M.E., Qader, I.N., Öner, E. et al. Investigation of structure, mechanical, and shape memory behavior of thermally activated poly(ε-caprolactone): azide-functionalized poly(vinyl chloride) binary polymer blend films. Eur. Phys. J. Plus 136, 800 (2021). https://doi.org/10.1140/epjp/s13360-021-01802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01802-4

Navigation