Skip to main content
Log in

Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Miniaturized biosensor with fabrication feasibility is of tremendous interest for point-of-care testing of cancer cells. With this objective, we propose a novel biophotonic sensor based on graphene embedded defect 1D photonic crystal (PhC) for real-time detection of different cancerous cells like basal, cervical and breast cancer cells. The transfer matrix method is employed to study the transmittance and absorption spectra of different cells under consideration. The cornerstone of this work is based on an the assay of shift in resonant mode wavelength formed within the transmittance and absorption spectra, by infiltrating the defect layer with the normal and cancer cells. The proposed structure is optimized vis-à-vis the selection of materials, thickness of dielectric layers, period of dielectric layers, thickness of defect layer and angle of incidence to envisage efficient cancer sensor. The sensor is characterized with high sensitivity, high signal-to-noise ratio, large quality factor, high figure of merit, high dynamic range, low resolution (R) of 290 nm/RIU, 52.96, 2270.74, 1074.04 1/RIU, 1179.94, and 0.0668 nm, respectively, which ensures reliable and accurate detection of cancer cells. The significance of this research is proved by comparing the results with previously published works. Moreover, the simple structure, cost-effective fabrication methods and label-free detection of cancer cells make the proposed sensor a promising challenger for biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Katz, M. Edelson, The Cancer-Fighting Kitchen: Nourishing, Big-Flavor Recipes for Cancer (Ten Speed Press, Crown Publishing Group, 2009)

    Google Scholar 

  2. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(2018), 394–424 (2018)

    Article  Google Scholar 

  3. A. Panda, P.P. Devi, Photonic crystal biosensor for refractive index based cancerous cell detection. Optical Fiber Technol. 54, 102123 (2020)

    Article  Google Scholar 

  4. A. Panda, P.P. Devi, Design and analysis of porous core photonic crystal fiber based ethylene glycol sensor operated at infrared wavelengths. J. Comput. Electron. 20(2), 943–957 (2021)

    Article  Google Scholar 

  5. S.A. El-Naggar, Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystals. Opt. Quantum Electron. 47, 1627–1636 (2014)

    Article  Google Scholar 

  6. A. Panda, P.P. Devi, Analysis of GaN-based 2D photonic crystal sensor for real-time detection of alcohols. Braz. J. Phys. 51, 481–492 (2021)

    Article  ADS  Google Scholar 

  7. F. Ghasemi, S.R. Entezar, S. Razi, Terahertz tunable photonic crystal optical filter containing graphene and nonlinear electro-optic polymer. Laser Phys. 29, 056201 (2019)

    Article  ADS  Google Scholar 

  8. A. Panda, P.P. Devi (2021) A theoretical proposal of high performance blood components biosensor based on defective 1D photonic crystal employing WS2, MoS2 and graphene, Optical and Quantum Electronics, 53, Article No. 357

  9. A. Panda, P.P. Devi, G. Keiser, Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis. Microsyst. Technol. 27, 833–842 (2021)

    Article  Google Scholar 

  10. A. Panda et al., Research on SAD-PRD losses in semiconductor waveguide for application in photonic integrated circuits. Optik 154, 748–754 (2018)

    Article  ADS  Google Scholar 

  11. A.K. Goyal, S. Pal, Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Appl Nanosci 10, 3639–3647 (2020)

    Article  ADS  Google Scholar 

  12. Y.N. Zhang, Y. Zhao, T. Zhou, Q. Wu, Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab Chip 18(1), 57–74 (2018)

    Article  Google Scholar 

  13. L.A. Falkovsky, S.S. Pershoguba Optical far-infrared properties of a graphene mono layer and multilayer, Phys. Rev. B, 76(15), (2007), Art. No. 153410

  14. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  15. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  16. T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8), Art. no. 085432 (2008)

  17. W.M. Nouman, S.E.S. Abdel-ghany, S.M. Sallam et al., Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quant Electron. 52, 287 (2020)

    Article  Google Scholar 

  18. X. Shi, Z.S. Zhao, Z.H. Han, Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity. Sens. Actuators 274, 188-1S93 (2018)

    Article  Google Scholar 

  19. L. Kassa-Baghdouche, E. Cassan, Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities. Opt. Quantum Electron. 52 (2020)

  20. A.M. Ahmed, A. Mehaney, Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 9, 6973 (2019)

    Article  ADS  Google Scholar 

  21. A.H. Aly et al., Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10, 31765–31772 (2020)

    Article  ADS  Google Scholar 

  22. H.M. Fan, Tunable plasmonic band gap and defect mode in onedimensional photonic crystal covered with graphene. J. Opt., 16, Art. No. 125005 (2014)

  23. J. Fu, W. Chen, B. Lv, Tunable defect mode realized by graphene-based photonic crystals. Phys. Lett. A 380, 1793–1798 (2016)

    Article  ADS  Google Scholar 

  24. Z.A. Zaky, A.M. Ahmed, A.S. Shalaby, A.H. Aly, Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation, Sci. Rep., 10, (2020), Art No. 9736

  25. K.M. Abohassan, H.S. Ashour, M.M. Abadla, A 1D binary photonic crystal sensor for detecting fat concentrations in commercial milk. RSC Adv. 11, 12058–12065 (2021)

    Article  ADS  Google Scholar 

  26. H.A. Elsayed, A. Mehaney, Monitoring of soybean biodiesel based on the one-dimensional photonic crystals comprising porous silicon. Appl. Nanosci. 11, 149–157 (2021)

    Article  ADS  Google Scholar 

  27. A.H. Aly et al., Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceram. Int. 46(1), 365–369 (2020)

    Article  Google Scholar 

  28. A.H. Aly, F.A. Sayed, THz cutoff frequency and multifunction Ti2Ba2Ca2Cu3O10/GaAs photonic bandgap materials, IJMPB, 34(10), (2020), Art No. 2050091

  29. O.A. Abd El-Aziz, H.A. Elsayed, M.I. Sayed, One-dimensional defective photonic crystals for the sensing and detection of protein. Appl. Opt. 58(30), 8309–8315 (2019)

    Article  ADS  Google Scholar 

  30. A. Bouzidi, D. Bria, F. Falyouni, A. Akjouj, G. Lévêque, M. Azizi, H. Berkhli, A biosensor based on one dimensional photonic crystal for monitoring blood glycemia. J. Mater. Environ. Sci. 8(11), 3892–3896 (2017)

    Google Scholar 

  31. A. Panda, P.D. Pukhrambam, Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Phys. B Condensed Matter 607(3), 412854 (2021)

    Article  Google Scholar 

  32. M.M. Abadla, H.A. Elsayed, Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)

    Article  ADS  Google Scholar 

  33. H.A. Elsayed, A. Mehaney, Theoretical verification of photonic crystals sensor for biodiesel detection and sensing. Phys. Scr. 95, 085507 (2020)

    Article  ADS  Google Scholar 

  34. M. A. Mollah et al., Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens. Res. 29, Art. No. 100344 (2020)

  35. M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, M.S. Uddin, Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11(4), 1–10 (2019)

    Article  Google Scholar 

  36. M. Loyez et al., Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification. ACS Sens. 5(2), 454–463 (2020)

    Article  Google Scholar 

  37. N.R. Ramanujam et al., Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. (s2019). https://doi.org/10.1007/s00542-018-3947-6

    Article  Google Scholar 

  38. A. Bijalwan, B.K. Singh, V. Rastogi, Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik 226(1), 165994 (2021)

    Article  ADS  Google Scholar 

  39. X.J. Liang et al. "Determination of refractive index for single living cell using integrated biochip." In Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05. IEEE, The 13th International Conference on, 2, (2005), 1712–1715

  40. A.N. Yaroslavsky et al., High-contrast mapping of basal cell carcinomas. Opt. Lett. 37(4), 644–646 (2012)

    Article  ADS  Google Scholar 

  41. P. Sharan, S. M. Bharadwaj, F.D. Gudagunti, P. Deshmukh. "Design and modelling of photonic sensor for cancer cell detection." In Impact of E-Technology on US (IMPETUS), IEEE International Conference on the, pp. 20–24, (2014)

  42. Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182 (2004)

    Article  ADS  Google Scholar 

  43. V.A. Ilinykh, L.B. Matyushkin, Sol–gel fabrication of one-dimensional photonic crystals with predicted transmission spectra. J. Phys. Conf. Series 741, 012008 (2016)

    Article  Google Scholar 

  44. U. Schürmann, H. Takele, V. Zaporojtchenko, F. Faupel, Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering. Thin Solid Films 515, 801–804 (2006)

    Article  ADS  Google Scholar 

  45. V. Ilinykh, L. Matyushkin, "Sol–gel fabrication of one-dimensional photonic crystals with predicted transmission spectra," in Journal of Physics: Conference Series, (2016), p. 012008

  46. H.L. Chen, H.F. Lee, W.C. Chao, C.I. Hsieh, F.H. Ko, Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition. Vac. Sci. Technol. B 22, 3359 (2004)

    Article  Google Scholar 

  47. M. Nishimoto et al., Fabrication of photonic crystal lasers by MBE air-hole retained growth. Appl. Phys. Express 7(9), 092703 (2014)

    Article  ADS  Google Scholar 

  48. J. Noack et al., MgF2 antireflective coatings by sol–gel processing: film preparation and thermal densification. J. Mater. Chem. 22, 18535 (2012)

    Article  Google Scholar 

  49. H.K. Sadekar et al., Nanocrystalline ZnSe thin films prepared by solution growth technique for photosensor application. Compos. Part B 44, 553–557 (2013)

    Article  Google Scholar 

  50. C. Li, D. Li, J. Yang, X. Zeng, W. Yuan, Preparation of single- and few-layer graphene sheets using CoDeposition on SiC Substrate. J. Nanomater. 2011, 319624 (2011). https://doi.org/10.1155/2011/319624

    Article  Google Scholar 

  51. J.P. Pandey, Transfer matrix method for one-dimensional photonic crystals. J. Ramanujan Soc. Math Math Sc 6(1), 121–130 (2017)

    MATH  Google Scholar 

  52. H. Hardhienata et al., Transmission characteristics of a 1D photonic crystal sandwiched by two graphene layers. J. Phys. Conf. Ser. 1057, 012003 (2018). https://doi.org/10.1088/1742-6596/1057/1/012003

    Article  Google Scholar 

  53. O. Barkat, B. Mamri, Numerical method for a one dimensional defective photonic crystal selective filters. Electric Electron Tech. Open Acc. J. 2(2), 9–13 (2018). https://doi.org/10.15406/eetoaj.2018.02.00014

    Article  Google Scholar 

  54. https://refractiveindex.info/?shelf=main&book=ZnSe&page=Marple

  55. https://refractiveindex.info/?shelf=main&book=MgF2&page=Dodge-o.

  56. A. Kumar, P. Singh, K.B. Thapa, Study of super absorption properties of 1D graphene and dielectric photonic crystal for novel applications. Opt Quant Electron, 52, (2020).

  57. A.H. Aly, F.A. Sayed, H.A. Elsayed, Defect mode tunability based on the electro-optical characteristics of the one-dimensional graphene photonic crystals. Appl. Opt. 59(16), 4796–4805 (2020)

    Article  ADS  Google Scholar 

  58. C. Zeng, C. Luo, L. Hao, Y. Xie, The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle. Chin. Opt. Lett. 12, 11602 (2014)

    Article  ADS  Google Scholar 

  59. I.M. White, X. Fan, On the performance quantification of resonant refractive index sensors. Optic Express 16(2), 1020–1028 (2008)

    Article  ADS  Google Scholar 

  60. M. Naftaly, R. Dudley, Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Opt. Lett. 34(8), 1213–1215 (2009)

    Article  ADS  Google Scholar 

  61. A.M. Ahmed, M. Shaban, Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Appl. Phys. B Laser Optic. 126(4), 1–10 (2020)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abinash Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Pukhrambam, P.D., Wu, F. et al. Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus 136, 809 (2021). https://doi.org/10.1140/epjp/s13360-021-01796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01796-z

Navigation